首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  免费   0篇
力学   1篇
物理学   1篇
  2022年   1篇
  2016年   1篇
排序方式: 共有2条查询结果,搜索用时 31 毫秒
1
1.
There is a need to radically increase mobility of terrain vehicles through new modalities of vehicle locomotion, i.e., by establishing a new technological paradigm in vehicle dynamics and mobility. The new paradigm greatly applies to military vehicles for the radical improvement of tactical and operational mobility. This article presents a new technological paradigm of agile tire slippage dynamics that is studied as an extremely fast and exact response of the tire–soil couple to (i) the tire dynamic loading, (ii) transient changes of gripping and rolling resistance conditions on uniform stochastic terrains and (iii) rapid transient changes from one uniform terrain to a different uniform terrain. Tire longitudinal relaxation lengths are analyzed to characterize the longitudinal relaxation time constants. A set of agile characteristics is also considered to analyze agile tire slippage dynamics within a time interval that is close to the tire longitudinal relaxation time constants. The presented paradigm of agile tire slippage dynamics lays out a foundation to radically enhance vehicle terrain mobility by controlling the tire slippage in its transient phases to prevent the immobilization of a vehicle. Control development basis and requirements for implementing an agile tire slippage control are also analyzed and considered.  相似文献   
2.
We review the current views on the control and coordination of movements following the traditions set by Nikolai Bernstein. In particular, we focus on the theory of neural control of effectors - from motor units to individual muscles, to joints, limbs, and to the whole body - with spatial referent coordinates organized into a hierarchy with multiple few-to-many mappings. Further, we discuss synergies ensuring stability of natural human movements within the uncontrolled manifold hypothesis. Synergies are organized within the neural control hierarchy based on the principle of motor abundance. Movement disorders are discussed as consequences of an inability to use the whole range of changes in referent coordinates (as in spasticity) and an inability to ensure controlled stability of salient variables as reflected in indices of multi-element synergies and their adjustments in preparation to actions (as in brain disorders, including Parkinson''s disease, multiple-system atrophy, and stroke). At the end of the review, we discuss possible implications of this theoretical approach to peripheral disorders and their rehabilitations using, as an example, osteoarthritis. In particular, “joint stiffening” is viewed as a maladaptive strategy, which can compromise stability of salient variables during walking.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号