首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   42篇
  免费   0篇
  国内免费   5篇
化学   43篇
晶体学   2篇
物理学   2篇
  2022年   2篇
  2021年   2篇
  2016年   1篇
  2013年   1篇
  2012年   1篇
  2010年   2篇
  2008年   1篇
  2007年   4篇
  2006年   4篇
  2005年   3篇
  2004年   2篇
  2003年   2篇
  2002年   2篇
  2001年   4篇
  2000年   2篇
  1999年   3篇
  1998年   5篇
  1997年   2篇
  1996年   2篇
  1994年   1篇
  1990年   1篇
排序方式: 共有47条查询结果,搜索用时 15 毫秒
1.
Batch fermentations of sugar cane bagasse hemicellulosic hydrolysate treated for removing the inhibitors of the fermentation were performed byCandida guilliermondii FTI20037 for xylitol production. The fermentative parameters agitation and aeration rate were studied aiming the maximization of xylitol production from this agroindustrial residue. The maximal xylitol volumetric productivity (0.87 g/L h) and yield (0.67 g/g) were attained at 400/min and 0.45 v.v.m. (KLa 27/h). According to the results, a suitable control of the oxygen input permitting the xylitol formation from sugar cane bagasse hydrolysate is required for the development of an efficient fermentation process for large-scale applications.  相似文献   
2.
The apparent equilibrium constants and enthalpies of complexation of Nd3+, Sm3+, Eu3+, and Gd3+ by xylitol in aqueous solutions containing NaNO3 at an ionic strength of 2.0 mol-kg–1 have been determined by microcalorimetry at 25°C. Since nitrate anion weakly complexes the lanthanide cations, these values are analyzed in terms of competition between xylitol and NO 3 - The method leads to the apparent equilibrium constants and enthalpies of complexation of the lanthanide cations by NO 3 - at this particular ionic strength. Despite the difficulties encountered in characterizing rather weak associations, the results are, whenever comparison is possible, in good agreement with those obtained by direct microcalorimetry. The advantage of this competition method is that it can be used when the enthalpic effects are too weak and insufficiently concentration dependent for direct microcalorimetric determination. In the present case, it allows us to thermodynamically characterize the formation of SmNO 3 2+ and EuNO 3 2+ , processes we have not been able to study directly.  相似文献   
3.
The dilute-acid hydrolysis of sugarcane bagasse was optimized using a statistical experimental design resulting in hydrolysates containing 57.25 g/L of xylose, which were fermented with a high inoculum concentration (10 g/L of the yeast Candida guilliermondii IM/UFRJ 50088). The addition of urea reduced the time of conversion (t C) to 75 h (without nitrogen source addition t C>127 h), and, consequently, improving the rates of xylitol bioproduction. Fermentator experiments, using the optimized conditions, resulted in enhanced conversion rates, reducing t C to 30 h. The stability of the yeast in the hydrolysate was also verified in a 480-h cultivation.  相似文献   
4.
The synthesis of β-galactosyl xylitol derivatives using immobilized LacA β-galactosidase from Lactobacillus plantarum WCFS1 is presented. These compounds have the potential to replace traditional sugars by their properties as sweetener and taking the advantages of a low digestibility. The enzyme was immobilized on different supports, obtaining immobilized preparations with different activity and stability. The immobilization on agarose-IDA-Zn-CHO in the presence of galactose allowed for the conserving of 78% of the offered activity. This preparation was 3.8 times more stable than soluble. Since the enzyme has polyhistidine tags, this support allowed the immobilization, purification and stabilization in one step. The immobilized preparation was used in synthesis obtaining two main products and a total of around 68 g/L of β-galactosyl xylitol derivatives and improving the synthesis/hydrolysis ratio by around 30% compared to that of the soluble enzyme. The catalyst was recycled 10 times, preserving an activity higher than 50%. The in vitro intestinal digestibility of the main β-galactosyl xylitol derivatives was lower than that of lactose, being around 6 and 15% for the galacto-xylitol derivatives compared to 55% of lactose after 120 min of digestion. The optimal amount immobilized constitutes a very useful tool to synthetize β-galactosyl xylitol derivatives since it can be used as a catalyst with high yield and being recycled for at least 10 more cycles.  相似文献   
5.
In addition to dermatological complications, acne can affect the quality of life of individuals in numerous ways, such as employment, social habits and body dissatisfaction. According to our expertise, caprylic acid and propanediol would not have a direct action on Cutibacterium acnes. Despite this, we investigated the existence of a synergistic effect among xylitol, caprylic acid and propanediol as a mixture of compounds representing a single topical active ingredient that could benefit the treatment against acne. In vitro and in vivo assays were performed to challenge and to prove the efficacy of propanediol, xylitol and caprylic acid (PXCA) against acne. PXCA had its MIC challenged against C. acnes (formerly Propionibacterium acnes) and Staphylococcus aureus, resulting in concentrations of 0.125% and 0.25%, respectively, and it also developed antimicrobial activity against C. acnes (time-kill test). PXCA was able to reduce the 5-alpha reductase expression in 24% (p < 0.01) in comparison with the testosterone group. By the end of 28 days of treatment, the compound reduced the skin oiliness, porphyrin amount and the quantity of inflammatory lesions in participants. According to the dermatologist evaluation, PXCA improved the skin’s general appearance, acne presence and size.  相似文献   
6.
The effect of the oxygen transfer coefficient on the production of xylitol by biocon version of xylose present in sugarcane bagasse hemicellulosic hydrolysate using the yeast Candiada guilliermondii was investigated. Continuous cultivation was carried out in a 1.25-L fermentor at 30°C, pH 5.5, 300 rpm, and a dilution rate of 0.03/h, using oxygen transfer coefficients of 10,20, and 30/h. The results showed that the microbial xylitol production (11 g/L) increased by 108% with the decrease in the oxygen volumetric transfer coefficient from 30 to 20/h. The maximum values of xylitol productivity (0.7g/[L…h]) and yield (0.58 g/g) were obtained at k L a 20/h.  相似文献   
7.
淀粉与木糖醇共混物的性能   总被引:10,自引:0,他引:10  
淀粉与木糖醇共混物的性能于九皋,郑华武(天津大学化学系天津300072)关键词淀粉,木糖醇,共混,热塑性研究具有环境条件下可降解的塑料已成为国内外专家学者广泛关注的研究课题。淀粉具有类似高聚物的分子结构,但由于分子量大,分子之间的亲合力强,很难加工成...  相似文献   
8.
The rate of xylitol production from D-xylose increased with increasing yeast cell density. The optimal temperature for xylitol production is 36‡ C, and the optimal pH range is from 4.0 to 6.0. At high initial yeast cell concentration of 26 mg/mL, 210 g/L of xylitol was produced from 260 g/L of D-xylose after 96 h of incubation with an indicated yield of 81% of the theoretical value.  相似文献   
9.
The combined effects of inhibitors present in lignocellulosic hydrolysates was studied using a multivariate statistical approach. Acetic acid (0–6 g/L), formic acid (0–4.6 g/L) and hydroquinone (0–3 g/L) were tested as model inhibitors in synthetic media containing a mixture of glucose, xylose, and arabinose simulating concentrated hemicellulosic hydrolysates. Inhibitors were consumed sequentially (acetic acid, formic acid, and hydroquinone), alongside to the monosaccharides (glucose, xylose, and arabinose). Xylitol was always the main metabolic product. Additionally, glycerol, ethanol, and arabitol were also obtained. The inhibitory action of acetic acid on growth, on glucose consumption and on all product formation rates was found to be significant (p≤0.05), as well as formic acid inhibition on xylose consumption and biomass production. Hydroquinone negatively affected biomass productivity and yield, but it significantly increased xylose consumption and xylitol productivity. Hydroquinone interactions, either with acetic or formic acid or with both, are also statistically signficant. Hydroquinone seems to partially lessen the acetic acid and amplify formic acid effects. The results clearly indicate that the interaction effects play an important role on the xylitol bioprocess.  相似文献   
10.
Sugarcane bagasse, an agricultural residue plentiful in Brazil, was utilized for xylitol production by a biotechnological process. Am edium fermentation prepared with this xylose-rich biomass at an oxygen transfer volmetric coefficient of 10/h1 and different initial pH value was inoculated with cells of Candida guilliermondii FTI 20037. The maximum values of xylitol and cell volumetric productivities (Q p=0.56 g/[L·h] and Q p=0.11 g/[g·h]), xylitol yield factor (Y p/s=0.79 g/g), and xylose uptake rate (qs=0.197 g/[g·h]) wereattained atp H 7.0 without further pH control. The results show that the yeast performance was influeced by the pH, an im portant bioengineering prameter in this fermentation process.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号