首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   58篇
  免费   4篇
  国内免费   15篇
化学   66篇
晶体学   3篇
物理学   8篇
  2023年   1篇
  2022年   2篇
  2021年   1篇
  2020年   1篇
  2017年   2篇
  2016年   1篇
  2015年   2篇
  2014年   3篇
  2013年   6篇
  2012年   4篇
  2011年   2篇
  2010年   1篇
  2009年   4篇
  2008年   4篇
  2007年   2篇
  2006年   3篇
  2004年   1篇
  2003年   2篇
  2002年   1篇
  2001年   2篇
  2000年   5篇
  1999年   5篇
  1998年   3篇
  1997年   2篇
  1996年   7篇
  1994年   1篇
  1993年   3篇
  1992年   1篇
  1991年   2篇
  1990年   1篇
  1985年   1篇
  1984年   1篇
排序方式: 共有77条查询结果,搜索用时 0 毫秒
1.
Rhythmic growth of ring‐banded spherulites in blends of liquid crystalline methoxy‐poly(aryl ether ketone) (M‐PAEK) and poly(aryl ether ether ketone) (PEEK) has been investigated by means of differential scanning calorimetry (DSC), polarized light microscopy (PLM), and scanning electron microscopy (SEM) techniques. The measurements reveal that the formation of the rhythmically grown ring‐banded spherulites in the M‐PAEK/PEEK blends is strongly dependent on the blend composition. In the M‐PAEK‐rich blends, upon cooling, an unusual ring‐banded spherulite is formed, which is ascribed to structural discontinuity caused by a rhythmic radial growth. For the 50:50 M‐PAEK/PEEK blend, ring‐banded spherulites and individual PEEK spherulites coexist in the system. In the blends with PEEK as the predominant component, M‐PAEK is rejected into the boundary of PEEK spherulites. The cooling rate and crystallization temperature have great effect on the phase behavior, especially the ring‐banded spherulite formation in the blends. In addition, the effects of M‐PAEK phase transition rate and phase separation rate on banded spherulite formation is discussed. © 2007 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 3011–3024, 2007  相似文献   
2.
The growth rate of isotactic polypropylene is deduced from microscopic observations during isothermal crystallizations. A change in the growth regime is observed at 138 C and interpreted as a Regime III Regime II transition, according to Hoffman's kinetic theory of polymer crystallization. A Regime II Regime I transition is also theoretically predicted at 155 C, i. e. at a temperature outside the investigated temperature range. The Regime III Regime II transition is related to the positive to negative change in the spherulite birefringence, which is generally attributed to a change in the organization of crystalline lamellae: quadritic arrays of intercrossing lamellae atT c < 138 C (Regime III) and preferentially radiating lamellae atT c > 138 C (Regime II). It is suggested that such a morphological change could be interpreted using the concept of non-adjacent re-entry introduced in Hoffman's kinetic theory. This interpretation could also explain the interspherulitic ruptures observed in negative spherulites.  相似文献   
3.
时间分辨激光光散射测量系统   总被引:1,自引:1,他引:1  
自选设计,装配了一套时间分辨的激光光散射测量系统,该系统摄像机,录像机,计算机和自编的软件实现了一体化的数据采集,显示和分析过程,本文给出了该系统的应用实例,球晶的光散射和环氧树脂的固化反应诱导的相分离过程。  相似文献   
4.
以两维聚环氧乙烷(PEO)球晶为对象,探讨了偏光显微法的消光机理,尤其是其中的厚度性消光机理,并对于补偿片的作用原理作了细致的理论分析,运用上述手段对PEO球晶的形态进行了研究。  相似文献   
5.
以N,N-二甲基甲酰胺(DMF)为溶剂,通过改变铜源和表面活性剂,调控反应参数,溶剂热条件下制备了三维十字形、空心及实心的Cu2O球晶。利用XRD、SEM等表征手段,分析探讨了工艺条件变化对Cu2O球晶形貌的影响。研究表明,随着DMF浓度的增大,体系的还原能力增强,Cu+增多,溶液的过饱和度增大,Cu2O晶体集合体形态由晶体结构控制的各向异性与对称性的球晶逐渐向各向同性球晶演变。十二烷基硫酸钠(SDS)、十六烷基三甲基溴化铵(CTAB)、聚乙烯吡咯烷酮(PVP)等表面活性剂有助于降低溶液的过饱和度,增加结晶质的表面扩散能力,有利于规则形态Cu2O晶粒的形成。反应体系中,Cu(Ac)2·H2O水解生成的羧基与DMF中的甲酰基在高温下发生脱羧反应产生CO2气体以及SDS发泡作用产生的气体是形成空心Cu2O球晶的重要原因。  相似文献   
6.
Properties of the Voronoi tessellations arising from random 2D distribution points are reported. We applied an iterative procedure to the Voronoi diagrams generated by a set of points randomly placed on the plane. The procedure implied dividing the edges of Voronoi cells into equal or random parts. The dividing points were then used to construct the following Voronoi diagram. Repeating this procedure led to a surprising effect of the positional ordering of Voronoi cells, reminiscent of the formation of lamellae and spherulites in linear semi-crystalline polymers and metallic glasses. Thus, we can conclude that by applying even a simple set of rules to a random set of seeds, we can introduce order into an initially disordered system. At the same time, the Shannon (Voronoi) entropy showed a tendency to attain values that are typical for completely random patterns; thus, the Shannon (Voronoi) entropy does not distinguish the short-range ordering. The Shannon entropy and the continuous measure of symmetry of the patterns demonstrated the distinct asymptotic behavior, while approaching the close saturation values with the increase in the number of iteration steps. The Shannon entropy grew with the number of iterations, whereas the continuous measure of symmetry of the same patterns demonstrated the opposite asymptotic behavior. The Shannon (Voronoi) entropy is not an unambiguous measure of order in the 2D patterns. The more symmetrical patterns may demonstrate the higher values of the Shannon entropy.  相似文献   
7.
Well‐defined peptide‐poly(ε‐caprolactone) (Pep‐PCL) biohybrids were successfully synthesized by grafting‐from ring‐opening polymerization (ROP) of ε‐caprolactone (CL) using designed amine‐terminated sequence‐defined peptides as macroinitiators. MALDI‐TOF‐MS and 1H NMR analyses confirmed the successful attachment of peptide to the PCL chain. The gel permeation chromatography (GPC) measurement showed that the Pep‐PCL biohybrids with controllable molecular weights and low polydispersities (PDI <1.5) were obtained by this approach. The aggregation of Pep‐PCL hybrid molecules in THF solution resulted in the formation of micro/nanospheres as confirmed through FESEM, TEM, and DLS analyses. The circular dichroism study revealed that the secondary structure of peptide moiety was changed in the peptide‐PCL biohybrids. The crystallization and melting behavior of Pep‐PCL hybrids were somewhat changed compared with that of neat PCL of comparable molecular weight as revealed by DSC and XRD measurements. In Pep‐PCL biohybrids, extinction rings were observed in the PCL spherulites, in contrast with the normal spherulite morphology of the neat PCL. There was a substantial decrease (4–5 folds) in the spherulitic growth rate after the incorporation of peptide moiety at the end of PCL chain as measured by polarizing optical microscopy. Pseudomonas lipase catalyzed enzymatic degradation was studied for Pep‐PCL hybrids and neat PCL. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   
8.
StudiesontheCrystallizationBehaviorofPolypropyleneSolidPhaseGraftedMaleicAnhydrideStudiesontheCrystallizationBehaviorofPolypr...  相似文献   
9.
In‐depth interpretation of ring‐banded spherulitic morphology, crystals, polymorphism, and complex melting behavior in poly(1,4‐butylene adipate) (PBA) were analyzed via a procedure of designing composite core‐shell spherulites, in which two lamellar patterns (ring‐band vs. ringless) were packed by subjecting to crystallization at two‐step temperature schemes with specific temperatures and times. By heating to 52 °C and holding at that temperature for 30 min annealing, the core can be stripped off by melting, and analysis specifically on the ring‐shell portion (with the ringless core stripped by controlled melting) proves that the highest melting peak (P4 at 55–57 °C) is likely associated with melting of the ring‐band lamellae. Furthermore, the unusually complex multiple melting in PBA can be attributed to all three widely proposed mechanisms: (1) multiple types of lamellae preexisting in crystallized PBA, (2) scan/heating induced remelting/reorganization, and (3) polymorphism of dual crystal cells. In addition, this study evidently shows that the extinction rings within the ring‐banded shell, regardless of alternate edge‐on and flat‐on mechanism or alternative origins, can be of all singly α‐crystal form, either initially or upon postheating temperature‐induced transformation. Thus, the type of crystal forms (α or β) in polymorphic PBA is mainly associated with temperature of crystallization (Tc = 28 or 35 °C), and not likely with lamellar orientation (flat‐on or edge‐on). © 2008 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 46: 892–899, 2008  相似文献   
10.
The melting behaviors of poly(trimethylene terephthalate)/polycarbonate (PTT/PC) blends, compatibilized by epoxy, and PTT spherulite morphology in the blends were investigated. When epoxy was present during blending, the melting behaviors of PTT/PC blends changed substantially; glass transition temperatures (Tg's) and cold crystallization temperature (Tcc's) of the PTT‐rich phase shifted to higher temperatures, while Tm's shifted slightly to lower temperatures, indicating that epoxy suppressed considerably all processes of dynamic movements pertinent to molecular (or segmental) movements. The cold crystallization process responded sensitively to thermal history. Changes of Tcc's with composition suggested that the epoxy's compatibilization effect was pronounced when PTT and PC were in near equal content.

Recrystallization or reorganization exotherms appeared before melting for isothermally crystallized PTT/PC and PTT/PC epoxy (E) blends. A wide angle X‐ray diffraction (WAXD) analysis showed that, although the perfection of PTT crystallites was influenced either by PC content and the presence of compatibilizer or by the crystallization temperature and crystallization time, PTT's crystal structure was independent of these variables.

The polarized light microscopy (PLM) observations showed that PTT spherulite morphology was very sensitive to blend composition. Epoxy addition interfered severely with the growth of PTT spherulites, causing them to be much less developed. When the spherulites grew under a condition of varied composition, they would exhibit diversified spherulite morphology, though in one spherulite.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号