首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1592篇
  免费   211篇
  国内免费   159篇
化学   1236篇
晶体学   313篇
力学   4篇
综合类   6篇
数学   1篇
物理学   402篇
  2024年   5篇
  2023年   22篇
  2022年   36篇
  2021年   41篇
  2020年   50篇
  2019年   46篇
  2018年   29篇
  2017年   34篇
  2016年   48篇
  2015年   60篇
  2014年   63篇
  2013年   125篇
  2012年   101篇
  2011年   69篇
  2010年   164篇
  2009年   80篇
  2008年   85篇
  2007年   82篇
  2006年   100篇
  2005年   77篇
  2004年   112篇
  2003年   81篇
  2002年   97篇
  2001年   61篇
  2000年   29篇
  1999年   33篇
  1998年   33篇
  1997年   36篇
  1996年   30篇
  1995年   18篇
  1994年   25篇
  1993年   18篇
  1992年   19篇
  1991年   6篇
  1990年   8篇
  1989年   10篇
  1988年   5篇
  1987年   7篇
  1986年   1篇
  1985年   4篇
  1984年   2篇
  1983年   1篇
  1982年   2篇
  1981年   1篇
  1980年   1篇
  1979年   2篇
  1977年   1篇
  1976年   1篇
  1973年   1篇
排序方式: 共有1962条查询结果,搜索用时 15 毫秒
1.
Two highly ordered isonicotinamide (INA)‐functionalized mesoporous MCM‐41 materials supporting indium and thallium (MCM‐41‐INA‐In and MCM‐41‐INA‐Tl) have been developed using a covalent grafting method. A surface functionalization method has been applied to prepare Cl‐modified mesoporous MCM‐41 material. Condensation of this Cl‐functionalized MCM‐41 with INA leads to the formation of MCM‐41‐INA. The reaction of MCM‐41‐INA with In(NO3)3 or Tl(NO3)3 leads to the formation of MCM‐41‐INA‐In and MCM‐41‐INA‐Tl catalysts. The resulting materials were characterized using various techniques. These MCM‐41‐INA‐In and MCM‐41‐INA‐Tl catalysts show excellent catalytic performance in the selective oxidation of sulfides and thiols to their corresponding sulfoxides and disulfides. Finally, it is found that the anchored indium and thallium do not leach out from the surface of the mesoporous catalysts during reaction and the catalysts can be reused for seven repeat reaction runs without considerable loss of catalytic performance.  相似文献   
2.
Optimized combination of chemical agents was selected for sensitive electrochemical detection of dissolved ruthenium tris-(2,2′-bipyridine) (Ru-bipy). The detection was based on the chemical amplification mechanism, in which the anodic current of a redox-active analyte was amplified by a sacrificial electron donor in solution. On indium-doped tin oxide (ITO) electrodes, electrochemical reaction of the analyte was reversible, but that of the electron donor was greatly suppressed. Several transition metal complexes, such as ferrocene and tris-(2,2′-bipyridine) complexes of osmium, iron and ruthenium, were evaluated as model analyte. A correlation between the amplified current and the standard potential of the complex was observed, and Ru-bipy generated the largest current. A variety of organic bases, acids and zwitterions were assessed as potential electron donor. Sodium oxalate was found to produce the largest amplification factor. With Ru-bipy as the model analyte and oxalate as the electron donor, the analyte concentration curve was linear up to 50 μM, with a lower detection limit of approximately 50 nM. Preliminary work was presented in which a Ru-bipy derivative was attached to bovine serum albumin and detected electrochemically. Although the combination of Ru-bipy, oxalate and ITO electrode has been used before for electrochemiluminescent detection of Ru-bipy and oxalate, as well as electrochemical detection of oxalate, its utility in amplified voltammetric detection of Ru-bipy as a potential electrochemical label has not been reported previously.  相似文献   
3.
Molecular electroactive monolayers have been produced from vinylferrocene (VFC) via light-assisted surface anchoring to H-terminated n- and p-Si(1 0 0) wafers prepared via wet chemistry, in a controlled atmosphere. The resulting Si-C bound hybrids have been characterized by means of XPS and AFM. Their performance as semiconductor functionalized electrodes and their surface composition have been followed by combining electrochemical and XPS measurements on the same samples, before and after use in an electrochemical cell. White-light photoactivated anchoring at short (1 h) exposure times has resulted in a mild route, with a very limited impact on the initial quality of the silicon substrate. In fact, the functionalized Si surface results negligibly oxidized, and the C/Fe atomic ratio is close to the value expected for the pure molecular species. The VFC/Si hybrids can be described as (η5-C5H5)Fe2+(η5-C5H4)-CH2-CH2-Si species, on the basis of XPS results. Electrochemical methods have been applied in order to investigate the role played by a robust, covalent Si-C anchoring mode towards substrate-molecule electronic communication, a crucial issue for a perspective development of molecular electronics devices. The response found from cyclic voltammograms for p-Si(1 0 0) functionalized electrodes, run in the dark and under illumination, has shown that the electron transfer is not limited by the number of charge carriers, confirming the occurrence of electron transfer via the Si valence band. The hybrids have shown a noticeable electrochemical stability and reversibility under cyclic voltammetry (cv), and the trend in peak current intensity vs. the scan rate was linear. The molecule-Si bond is preserved even after thousands of voltammetric cycles, although the surface coverage, evaluated from cv and XPS, decreases in the same sequence. An increasingly larger surface concentration of Fe3+ at the expenses of Fe2+ redox centers has been found at increasing number of cv’s, experimentally associated with the growth of silicon oxide. Surface SiO groups from deprotonated silanol termination, induced by the electrochemical treatments, are proposed as the associated counterions for the Fe3+ species. They could be responsible for the observed decrease in the electron transfer rate constant with electrode ageing.  相似文献   
4.
Xanthenediones derivatives have attracted considerable interests in recent times because they constitute a structural unit in a number of natural products1 and have been used as versatile synthons due to the inherent reactivity of the inbuilt pyran ring2. The conventional syntheses of xanthenediones were acid or base catalyzed condensation of appropriate active methylene carbonyl compounds with aldehydes3. However, many of these procedures involved longer reaction times,low yields and side reactions of aldehydes. In recent years, room temperature ionic liquids (RTILs) have been used as novel green reaction media4. Considering that InCl3 is an efficient Lewis acid catalyst used in promoting many organic reactions, especially in several condensation processes, we herein wish to report a very simple and green method for the preparation of poly-hydrogenated xanthenediones through InCl3·4H2O promoted cascade reaction of aldehydes and 5,5-dimethyl-l,3-cyclohexanedione in ionic liquid,1-butyl-3-methylimidazolium tetrafluoroborate ([bmim][BF4]). The preparative process presented here is operationally simple, environmentally benign and has the advantage of enhanced atom utilization. Furthermore, the solvent and the catalyst used can be recovered easily and reused efficiently.  相似文献   
5.
An indium-induced reduction-rearrangement reaction of nitro-substituted β-lactams has been used for facile synthesis of oxazines in aqueous ethanol.  相似文献   
6.
We report on the shape transition from InAs quantum dashes to quantum dots (QDs) on lattice-matched GaInAsP on InP(3 1 1)A substrates. InAs quantum dashes develop during chemical-beam epitaxy of 3.2 monolayers InAs, which transform into round InAs QDs by introducing a growth interruption without arsenic flux after InAs deposition. The shape transition is solely attributed to surface properties, i.e., increase of the surface energy and symmetry under arsenic deficient conditions. The round QD shape is maintained during subsequent GaInAsP overgrowth because the reversed shape transition from dot to dash is kinetically hindered by the decreased ad-atom diffusion under arsenic flux.  相似文献   
7.
It has been established that undoped gallium crystals exhibit anti-Stokes radiation with energy corresponding to the interband recombination of these crystals. Its appearance is most probably determined by EL2 defects, and its intensity depends on the product of the cross sections for photoionization of electrons and the holes from these defects.  相似文献   
8.
Surface reconstructions of InGaAs alloys   总被引:1,自引:0,他引:1  
P.A. Bone  G.R. Bell 《Surface science》2006,600(5):973-982
The surface reconstructions of InxGa1−xAs alloys grown by molecular beam epitaxy on the (0 0 1) surfaces of GaAs and InAs have been studied by reflection high-energy electron diffraction and scanning tunnelling microscopy. A surface phase diagram is presented for the nominally strain-free alloy as a function of substrate temperature and alloy composition, and structural models for the commonly observed 3× reconstructions are discussed. Two new, electronically stable structural models are described that account for the transition of the InxGa1−xAs surface alloy from a c(4 × 4) to an asymmetric 3× reconstruction and that are fully consistent with all current experimental evidence.  相似文献   
9.
It is thought that the extensive industrial use of arsenic, gallium and indium, which have applications as the materials for III–V semiconductors, will increase human exposure to these compounds in the near future. We have undertaken the development of new biological indicators for assessing exposure to these elements. Element-specific alterations in protein synthesis patterns were expected to occur following exposure to arsenic compounds. We examined alterations in protein synthesis in primary cultures of rat kidney proximal tubule epithelial cells by sodium arsenite, gallium chloride and indium chloride, utilizing two-dimensional gel electrophoresis. After incubation with the chemicals for 20 h, newly synthesized proteins were labeled with [35S]methionine. A protein with a molecular weight (Mr) of 30 000 was markedly induced on exposure to 10 μM arsenite or 300 μM gallium chloride, and synthesis of proteins with Mr values of 85 000, 71 000, 65 000, 51 000, 38 000 and 28 000 were also increased by exposure to arsenite and gallium chloride. No significant changes were observed upon exposure to indium. Some of these increased proteins could be heat-shock proteins.  相似文献   
10.
The growth of Ge and SiGe alloy films on Si substrates has attracted considerable interest in the last years because of their importance for optoelectronic devices as well as Si-based high speed transistors. Here we give a short overview on our recent real time stress measurements of Ge and SiGe alloy films on Si(0 0 1) performed with a sensitive cantilever beam technique and accompanied by structural investigations with atomic force microscopy. Characteristic features in the stress curves provide detailed insight into the development and relief of the misfit strain. For the Stranski–Krastanow system Ge/Si(0 0 1) as well as for SiGe films with Si contents below 20%, the strain relaxation proceeds mainly into two steps: (i) by the formation of 3D islands on top of the Ge wetting layer; (ii) via misfit dislocations in larger 3D islands and upon their percolation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号