首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   96篇
  免费   12篇
  国内免费   27篇
化学   112篇
晶体学   3篇
力学   1篇
物理学   19篇
  2024年   5篇
  2023年   20篇
  2022年   24篇
  2021年   25篇
  2020年   31篇
  2019年   13篇
  2018年   6篇
  2017年   1篇
  2016年   2篇
  2015年   3篇
  2014年   1篇
  2013年   2篇
  1985年   2篇
排序方式: 共有135条查询结果,搜索用时 15 毫秒
1.
《中国化学快报》2020,31(4):988-991
Designing efficient electrocatalysts with low Pt loadings for hydrogen evolution reaction(HER) is urgently required for renewable and sustainable energy conversion.Here,we report a strategy that Pt nanoparticulates are spontaneously immobilized on porous MXene/MAX monolith as HER catalysts by utilizing the redox reaction between Ti_3C_2T_x MXene and [PtCl_4]~2 in H_2 PtCl_6 aqueous solution.By taking advantage of homogeneously distributed Pt nanoparticulates on highly electrically conductive porous Ti_3C_2T_x/Ti_3AlC_2 monolith,the as-prepared electrocatalysts show high catalytic performance for hydrogen evolution.Specifically,the binder-free electrocatalysts have Pt loadings as low as 8.9 μg/cm~2,with low overpotential of 43 mV at a curre nt density of 10 mA/cm~2 and low Tafel slope that three times lower than porous Ti_3C_2T_x/Ti_3AlC_2 without Pt loading.This strategy offers a new approach to constructing ultra-low Pt-loading HER catalysts on the basis of in situ redox reaction between noble metal ions and MXenes.  相似文献   
2.
《中国化学快报》2020,31(4):1030-1033
Herein,a simple yet efficient hydrothermal strategy is developed to in-situ convert multi-layered niobium-based MXene(Nb_2 CT_x) to hierarchical Nb2 CTx/Nb_2O_5 composite.In the hybrid,the Nb_2O_5 nanorods are well dispersed in and/or on the Nb_2 CTx.Thanks to the synergetic contributions from the high capacity of Nb_2O_5 and superb electrical conductivity of the two-dimensional Nb_2 CT_x itself,the resultant Nb_2 CTx/Nb_2O_5 hybrid exhibits excellent rate behaviors and stable long-term cycling behaviors,when evaluated as anodes for Li-ion batteries.  相似文献   
3.
《中国化学快报》2020,31(4):1039-1043
Ti3C2Tx, a most studied member of MXene family, shows promise as a candidate electrode for pseudocapacitor due to its electronic conductivity and hydrophilic surface. However, the unsatisfactory yield of Ti3C2Tx few-layer flakes significantly restricted it in real applications. Here, we proposed a simple solution to boost the yield of Ti3C2Tx few-layer flakes by decreasing precursor size. When using the small 500 mesh Ti3AlC2 powders as raw material, high yield of 65% was successfully achieved. Moreover, the as-received small flakes also exhibit an enhanced pseudocapacior performance owing to their excellent electrical conductivity, expanded interlayer space and more O content on the surface. This work not only sheds light on the cost effective mass production of Ti3C2Tx few-layer flakes, but also provides an efficient solution for the design of MXene electrodes with high pseudocapacior performance.  相似文献   
4.
Recently, the frequency of combining MXene, which has unique properties such as metal-level conductivity and large specific surface area, with silicon to achieve excellent electrochemical performance has increased considerably. There is no doubt that the introduction of MXene can improve the conductivity of silicon and the cycling stability of electrodes after elaborate structure design. However, most exhaustive contacts can only improve the electrode conductivity on the plane. Herein, a MXene@Si/CNTs (HIEN-MSC) composite with hierarchical interpenetrating electroconductive networks has been synthesized by electrostatic self-assembly. In this process, the CNTs are first combined with silicon nanoparticles and then assembled with MXene nanosheets. Inserting CNTs into silicon nanoparticles can not only reduce the latter‘s agglomeration, but also immobilizes them on the three-dimensional conductive framework composed of CNTs and MXene nanosheets. Therefore, the HIEN-MSC electrode shows superior rate performance (high reversible capacity of 280 mA h−1 even tested at 10 A g−1), cycling stability (stable reversible capacity of 547 mA h g−1 after 200 cycles at 1 A g−1) and applicability (a high reversible capacity of 101 mA h g−1 after 50 cycles when assembled with NCM622 into a full cell). These results may provide new insights for other electrodes with excellent rate performance and long-cycle stability.  相似文献   
5.
The intercalation of cations into layered-structure electrode materials has long been studied in depth for energy storage applications. In particular, Li+-, Na+-, and K+-based cation transport in energy storage devices such as batteries and electrochemical capacitors is closely related to the capacitance behavior. We have exploited different sizes of cations from aqueous salt electrolytes intercalating into a layered Nb2CTx electrode in a supercapacitor for the first time. As a result, we have demonstrated that capacitive performance was dependent on cation intercalation behavior. The interlayer spacing expansion of the electrode material can be observed in Li2SO4, Na2SO4, and K2SO4 electrolytes with d-spacing. Additionally, our results showed that the Nb2CTx electrode exhibited higher electrochemical performance in the presence of Li2SO4 than in that of Na2SO4 and K2SO4. This is partly because the smaller-sized Li+ transports quickly and intercalates between the layers of Nb2CTx easily. Poor ion transport in the Na2SO4 electrolyte limited the electrode capacitance and presented the lowest electrochemical performance, although the cation radius follows Li+>Na+>K+. Our experimental studies provide direct evidence for the intercalation mechanism of Li+, Na+, and K+ on the 2D layered Nb2CTx electrode, which provides a new path for exploring the relationship between intercalated cations and other MXene electrodes.  相似文献   
6.
The detection of cancer biomarkers is of great significance for the early screening of cancer. Detecting the content of sarcosine in blood or urine has been considered to provide a basis for the diagnosis of prostate cancer. However, it still lacks simple, high-precision and wide-ranging sarcosine detection methods. In this work, a Ti3C2TX/Pt–Pd nanocomposite with high stability and excellent electrochemical performance has been synthesized by a facile one-step alcohol reduction and then used on a glassy carbon electrode (GCE) with sarcosine oxidase (SOx) to form a sarcosine biosensor (GCE/Ti3C2TX/Pt–Pd/SOx). The prominent electrocatalytic activity and biocompatibility of Ti3C2TX/Pt–Pd enable the SOx to be highly active and sensitive to sarcosine. Under the optimized conditions, the prepared biosensor has a wide linear detection range to sarcosine from 1 to 1000 µM with a low limit of detection of 0.16 µM (S/N = 3) and a sensitivity of 84.1 µA/mM cm2. Besides, the reliable response in serum samples shows its potential in the early diagnosis of prostate cancer. More importantly, the successful construction and application of the amperometric biosensor based on Ti3C2TX/Pt–Pd will provide a meaningful reference for detecting other cancer biomarkers.  相似文献   
7.
MXene, well-identified as Ti3C2TX, belongs to the family of two-dimensional (2D) materials, which have been currently explored in various applications. Very recently, such materials have been pointed out as potential nanomaterials for advanced solute separations when introduced in membranes, such as ion separation, gas separation, nanofiltration, chiral molecular separation, and solvent separation. This latter separation, generally named Pervaporation (PV), is identified as a highly selective technology for water separations. To date, few pieces of research have been released but providing interesting insights into several solvent (including water) separations. Hence, this brief review aims to analyze and discuss the latest advances for utilizing MXenes for PV membranes. Particular emphasis has been devoted to the relevant outcomes in the field, along with the strategies followed by researchers to tailor membranes. Based on the current findings, the perspectives in the field are also stated.  相似文献   
8.
MXenes are recently developed two-dimensional layered materials composed of early transition metal carbides and/or nitrides that provide unique characteristics for biosensor applications. This review presents the recent progress made on the usage and applications of MXenes in the field of electrochemical biosensors, including microfluidic biosensors and wearable microfluidic biosensors, and highlights the challenges with possible solutions and future needs. The multilayered configuration and high conductivity make these materials as an immobilization matrix for the biomolecule immobilization with activity retention and to be explored in the fabrication of electrochemical sensors, respectively. First, how the MXene nanocomposite as an electrode modifier affects the sensing performance of the electrochemical biosensors based on enzymes, aptamer/DNA, and immunoassays is well described. Second, recent developments in MXene nanocomposites as wearable biosensing platforms for the biomolecule detection are highlighted. This review pointed out the future concerns and directions for the use of MXene nanocomposites to fabricate advanced electrochemical biosensors with high sensitivity and selectivity. Specifically, possibilities for developing microfluidic electrochemical sensors and wearable electrochemical microfluidic sensors with integrated biomolecule detection are emphasized.  相似文献   
9.
The unique physical structure and abundant surface functional groups of MXene make the grafted organic molecules exhibit specific electrical and optical properties. This work reports the results of first-principles calculations to investigate the composite systems formed by different organic molecular monomers, namely acrylic acid (AA), acrylamide (AM), 1-aziridineethanol (1-AD) and glucose, and Ti3C2 MXene saturated with different functional groups, namely −OH, −O and −F. The results show that the interaction between organic molecules and the MXene surface depends on the type of functional groups of the organic molecules, while the strength of the interaction is determined by the type of surface functional groups and the number of hydrogen bonds. The bare Ti3C2 and Ti3C2(OH)2 can readily form strong chemical and hydrogen bonds with AA and AM molecules, leading to strong adsorption energy and a large amount of charge transfer, while the interaction between organic molecules and MXene saturated by −F or −O groups mainly exhibits physical interactions, accompanied by low adsorption energy and a small amount of charge transfer. This research provides theoretical guidance for the synthesis of high-performance MXene organic composite systems.  相似文献   
10.
《中国化学快报》2021,32(9):2648-2658
MXenes are a group of recently discovered 2D materials and have attracted extensive attention since their first report in 2011; they have shown excellent prospects for energy storage applications owing to their unique layered microstructure and tunable electrical properties. One major feature of MXenes is their tailorable surface terminations (e.g., −F, −O, −OH). Numerous studies have indicated that the composition of the surface terminations can significantly impact the electrochemical properties of MXenes. Nonetheless, the underlying mechanisms are still poorly understood, mainly because of the difficulties in quantitative analysis and characterization. This review summarizes the latest research progress on MXene terminations. First, a systematic introduction to the approaches for preparing MXenes is presented, which generally dominates the surface terminations. Then, theoretical and experimental efforts regarding the surface terminations are discussed, and the influence of surface terminations on the electronic and electrochemical properties of MXenes are generalized. Finally, we present the significance and research prospects of MXene terminations. We expect this review to encourage research on MXenes and provide guidance for usingthese materials for batteries and supercapacitors.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号