首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   33篇
  免费   4篇
化学   2篇
晶体学   12篇
物理学   23篇
  2019年   2篇
  2018年   1篇
  2017年   2篇
  2016年   4篇
  2015年   1篇
  2012年   1篇
  2011年   9篇
  2010年   1篇
  2008年   2篇
  2006年   5篇
  2005年   2篇
  2004年   1篇
  2003年   2篇
  2002年   1篇
  2001年   2篇
  2000年   1篇
排序方式: 共有37条查询结果,搜索用时 31 毫秒
1.
Impedance spectroscopy studies performed for intercalated multilayer structures of the type of a layered inorganic semiconductor (InSe)/conducting polymer (PEDOT:PSS) revealed low-frequency inductive response and the growth of dielectric permeability in megahertz region together with the decrease of dielectric loss angle down to one as a consequence of the conducting polymer intercalation into semiconducting layers. A model describing the unusual current-voltage characteristic is proposed.  相似文献   
2.
描述了使用电感储能发生器和半导体转换开关泵浦的工作波长为10.6μm的高效CO2激光器。给出了激光泵浦的非线性晶体GaSeGaSe0.7S0.3的二次谐波振荡的实验数据和理论估算结果。结果显示,GaSe晶体在输入能量为180mJ时,最大能量转换效率为0.38%,倍频激光的峰值功率为8 kW。  相似文献   
3.
We report a systematic study of AgGaS2- and Al-doped GaSe crystals in comparison with pure GaSe and S-doped GaSe crystals. AgGaS2-doped GaSe (GaSe:AgGaS2) crystal was grown by Bridgman technique from the melt of GaSe:AgGaS2 (10.6 wt.%). Its real composition was identified as GaSe:S (2 wt.%). Al-doped GaSe (GaSe:Al) crystals were grown from the melt of GaSe and 0.01, 0.05, 0.1, 0.5, 1, 2 mass % of aluminium. Al content in the grown crystals is too small to be measured. The hardness of GaSe:S (2 wt.%) crystal grown from the melt of GaSe:AgGaS2 is 25% higher than that of GaSe:S (2 wt.%) crystal grown by a conventional S-doping technique and 1.5- to 1.9-times higher than that of pure GaSe. GaSe:Al crystals are characterized by 2.5- to 3-times higher hardness than that of pure GaSe and by extremely low conductivity of ≤ 10− 7 Om− 1 cm− 1. A comparative experiment on SHG in AgGaS2-, Al-, S-doped GaSe and pure GaSe is carried out under the pumps of 2.12-2.9 μm fs OPA and 9.2−10.8 μm ns CO2 laser. It was found that GaSe:S crystals possess the best physical properties for mid-IR applications among these doped GaSe crystals. GaSe:Al crystals have relatively low conductivity which have strong potential for THz application.  相似文献   
4.
描述了使用电感储能发生器和半导体转换开关泵浦的工作波长为10.6μm的高效CO2激光器。给出了激光泵浦的非线性晶体GaSeGaSe0.7S0.3的二次谐波振荡的实验数据和理论估算结果。结果显示,GaSe晶体在输入能量为180mJ时,最大能量转换效率为0.38%,倍频激光的峰值功率为8 kW。  相似文献   
5.
Layered materials can be grown on various substrates through van der Waals epitaxy (vdWE) regardless of lattice mismatch. The atomistic study of the film-substrate interface in vdWE is becoming increasingly important due to their expected applications as two-dimensional (2D) materials. In this contribution, we have grown GaSe thin films on Ge(111) substrates by molecular beam epitaxy and studied the GaSe/Ge(111) interface using high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM). Cross-sectional HAADF-STEM observations revealed that the grown layers adopt predominantly the expected wurtzite-like structure and stacking, but layers with zinc-blende-like structure, similar to Ga2Se3 but apparently different, and other layer stacking sequences, exist locally near the film-substrate interface. These results demonstrate that even in vdWE, structural changes can occur in the grown layers adjacent to the substrate, highlighting the importance of such interface for synthesizing and applying ultimately thin 2D materials.  相似文献   
6.
N‐implantation to GaSe single crystals was carried out perpendicular to c‐axis with ion beam of 6 × 1015 ions/cm2 dose having energy values 30 keV and 60 keV. Temperature dependent electrical conductivities and Hall mobilities of implanted samples were measured along the layer in the temperature range of 100‐320 K. It was observed that N‐implantation decreases the resistivity values down to 103 Ω‐cm depending on the annealing temperature, from the room temperature resistivity values of as‐grown samples lying in the range 106‐107 Ω‐cm. The temperature dependent conductivities exhibits two regions (100‐190 and 200‐320 K) with the activation energies of 234‐267 meV and 26‐74 meV, for the annealing temperatures of 500 and 700 °C, respectively. The temperature dependence of Hall mobility for the sample annealed at 500 °C shows abrupt increase and decrease as the ambient temperature increases. The analysis of the mobility‐temperature dependence in the studied temperature range showed that impurity scattering and lattice scattering mechanisms are effective at different temperature regions with high temperature exponent. Annealing of the samples at 700 °C shifted impurity scattering mechanism toward higher temperature regions. In order to obtain the information about the defect produced by N‐implantation, the carrier density was analyzed by using single donor‐single acceptor model. We found acceptor ionization energy as Ea = 450 meV, and acceptor and donor concentration as 1.3 × 1013 and Nd = 3.5 × 1010 cm−3, respectively. (© 2003 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   
7.
A new Schottky diode, Al/p-GaSe, was presented in this study. It shows an effective barrier height of 0.96 eV with an ideality factor of 1.24 over five decades and a reverse leakage current density of 4.12×10−7 A/cm2 at −2 V after rapid thermal annealing at 400 C for 30 s. The generation–recombination effect of the Schottky diode was decreased as the annealing temperature was increased. The formation of Al1.33Se2 was observed by X-ray diffraction analysis after the diode was annealed at 400 C for 30 s. Owing to the grains’ growth, the surface morphology of the 400 C-annealed diode was rougher than that of the unannealed diode, which was observed both by the AFM and the SEM analysis.  相似文献   
8.
The structural,electronic,mechanical properties,and frequency-dependent refractive indexes of GaSe_(1-x)S_x(x=0,0.25,and 1) are studied by using the first-principles pseudopotential method within density functional theory.The calculated results demonstrate the relationships between intralayer structure and elastic modulus in GaSe_(1-x)S_x(x=0,0.25,and 1).Doping of ε-GaSe with S strengthens the Ga-X bonds and increases its elastic moduli of C_(11) and C_(66).Born effective charge analysis provides an explanation for the modification of cleavage properties about the doping of e-GaSe with S.The calculated results of band gaps suggest that the distance between intralayer atom and substitution of S_(Se),rather than interlayer force,is a key factor influencing the electronic exciton energy of the layer semiconductor.The calculated refractive indexes indicate that the doping of ε-GaSe with S reduces its refractive index and increases its birefringence.  相似文献   
9.
GaSe thin films are obtained by evaporating GaSe crystals onto ultrasonically cleaned glass substrates kept at room temperature under a pressure of ∼10–5 Torr. The X‐ray analysis revealed that these films are of amorphous nature. The reflectance and transmittance of the films are measured in the incident photon energy range of 1.1–3.0 eV. The absorption coefficient spectral analysis revealed the existence of long and wide band tails of the localized states in the low absorption region. The band tails width is calculated to be 0.42 eV. The analysis of the absorption coefficient in the high absorption region revealed an indirect forbidden band gap of 1.93 eV. The transmittance analysis in the incidence photon wavelength range of 500–1100 nm allowed the determination of refractive index as function of wave length. The refractive index–wavelength variation leads to the determination of dispersion and oscillator energies as 31.23 and 3.90 eV, respectively. The static refractive index and static dielectric constant were also calculated as a result of the later data and found to be 9.0 and 3.0, respectively. (© 2005 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   
10.
Structural, optical and electrical properties of Ge implanted GaSe single crystal have been studied by means of X‐Ray Diffraction (XRD), temperature dependent conductivity and photoconductivity (PC) measurements for different annealing temperatures. It was observed that upon implanting GaSe with Ge and applying annealing process, the resistivity is reduced from 2.1 × 109 to 6.5 × 105 Ω‐cm. From the temperature dependent conductivities, the activation energies have been found to be 4, 34, and 314 meV for as‐grown, 36 and 472 meV for as‐implanted and 39 and 647 meV for implanted and annealed GaSe single crystals at 500°C. Calculated activation energies from the conductivity measurements indicated that the transport mechanisms are dominated by thermal excitation at different temperature intervals in the implanted and unimplanted samples. By measuring photoconductivity (PC) measurement as a function of temperature and illumination intensity, the relation between photocurrent (IPC) and illumination intensity (Φ) was studied and it was observed that the relation obeys the power law, IPC αΦn with n between 1 and 2, which is indication of behaving as a supralinear character and existing continuous distribution of localized states in the band gap. As a result of transmission measurements, it was observed that there is almost no considerable change in optical band gap of samples with increasing annealing temperatures for as‐grown GaSe; however, a slight shift of optical band gap toward higher energies for Ge‐implanted sample was observed with increasing annealing temperatures. (© 2006 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号