首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   12篇
  免费   7篇
  国内免费   6篇
化学   12篇
晶体学   10篇
物理学   3篇
  2019年   2篇
  2017年   1篇
  2014年   1篇
  2013年   2篇
  2012年   2篇
  2011年   6篇
  2010年   2篇
  2007年   1篇
  2006年   2篇
  2002年   1篇
  2001年   1篇
  2000年   1篇
  1999年   2篇
  1994年   1篇
排序方式: 共有25条查询结果,搜索用时 0 毫秒
1.
以特殊脉冲电沉积方法制备CuInSe2(CIS)前驱体薄膜, 通过真空蒸镀法在CIS薄膜上沉积Al膜, 经硒化退火后在氧化铟锡(ITO)基底上制备了Cu(InAl)Se2(CIAS)薄膜. 采用扫描电子显微镜(SEM)、X射线能谱(EDS)、X射线衍射(XRD)、X射线光电子能谱(XPS)、紫外-可见吸收光谱(UV-Vis)对其形貌、结构、成分及光学吸收性质进行了表征. 结果表明, 制备的CIAS薄膜颗粒均匀, 表面平整致密, 呈黄铜矿结构. 薄膜在可见光区具有良好的吸收, 带隙约为1.65 eV.  相似文献   
2.
3.
The structure of the off‐stoichiometric In‐rich ternary phase CuIn5Se8 was studied by means of electron diffraction and high‐resolution electron microscopy. The compound shows a layered structure with a 7‐layer stacking sequence of closed‐packed planes, which contains both cubic and hexagonal stacking of Se atoms. The studied CuIn5Se8 bulk crystal is known as the β‐phase of this compound.  相似文献   
4.
The temperature dependent structural phase transition from the tetragonal chalcopyrite like structure to the cubic sphalerite like structure in CuInSe2 was investigated by in‐situ high temperature synchrotron radiation X‐ray diffraction. The data were collected in 1K steps during heating and cooling cycles (rate 38 K/h). The Rietveld analysis of the diffractograms led us to determine the temperature dependence of the lattice parameters, including the tetragonal deformation, |1‐η|, and distortion |u‐¼| (η=c/2a, a and c are the tetragonal lattice constant; u is the anion x‐coordinate). The thermal expansion coefficients αa and αc of the tetragonal lattice constant which are related to the linear thermal expansion coefficient αL were obtained, as were αa of the cubic lattice constant, also αu and αη. The transition temperature is clearly identified via a strong anomaly in αL. The temperature dependence of the anion position parameter was found to be rather weak, nearly αu∼0, whereas αη increases slightly. However, both increase strongly when approaching to within 10 K of the transition temperature (the critical region) and |1‐η| as well as |u‐¼| go to zero with |T‐Ttrans|0.2 approaching the phase transition. The cation occupancy values, derived from the Rietveld analysis, remain constant below the critical region. Close to the transition temperature, the number of electrons at the Cu site increases with a dercrease in the number of electrons at the In site with increasing temperature, indicating a Cu‐In anti site occupancy, which is assumed to be the driving force of the phase transition. At the transition temperature 67% of Cu+ were found to occupy the Me1 site with a corresponding 67% of In3+ at the Me2 site. Although full disorder is reached with 50%, this level seems to be high enough that the phase transition takes place. The order parameter of the phase transition, goes with |T‐Ttrans|β to zero with the critical exponent β=0.35(7) which is in good agreement to the critical exponent β=0.332 calculated for order‐disorder transitions according to the Ising model. (© 2006 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   
5.
A planar ionization system for rapid visualization and recording the resistance inhomogeneity and photoconductivity distribution in a chalcopyrite‐type semiconductor (CuInSe2) copper‐indium‐diselenide film is studied. A part of the discharge energy is transferred to the electrodes of the system by the bombardment of the electrode surface due to an electron‐ion flow. This process leads to the sputtering mechanism of the electrode surface material. It is shown that the plasma‐induced damage (PID) in a CuInSe2 thin film was primarily due to the effectiveness of sputtering and physico‐chemical interactions in the discharge gap during the transition from Townsend to the glow type. At the same time a nondestructive method is suggested for the analysis of the dynamics of PID in the CuInSe2 thin film by fractal processing in the planar ionization system. Some properties of the device have been evaluated, such as a relative change of the resistance inhomogeneity is determined by a relative change of discharge light emission (DLE) intensity when a current is passed through an ionization cell. For the quantitative analysis of the change in the dynamic feature of PID of CuInSe2 thin films, fractal dimension analysis was used following the records of the DLE intensity. The quality of the film was analyzed using both the profile and spatial distributed DLE intensities data showing the surface inhomogeneity and damage in the thin film as function of time. Thus, by using fractal concept, the order of the surface damage and the quality of the CuInSe2 as function of time can be assessed exactly and the size and location of the surface inhomogeneities in thin film to be ascertained. (© 2006 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   
6.
The simultaneous electrodeposition of the system Cu–In–Se was investigated. The study was carried out at pH 8.5 using diethylentriamine as complexing agent for the Cu+2 ion. The synthesis of CuInSe2 semiconductor thin films was carried out by electrodeposition on different substrates [indium–tin oxide (ITO) on glass, aluminum and type 304 steel]. The simultaneous codeposition of the Cu, In, and Se was achieved by constant potential electrolysis technique in aqueous solutions containing the elements that conform this material. The deposits of CuInSe2 were about 4 μm thick, which is thick enough for the photovoltaic effect to take place. The as-deposited films were characterized by atomic emission spectroscopy with inductive coupling plasm (AES-ICP) and scanning electronic microscopy (SEM). Annealed films were characterized X-ray diffraction, optical NIR spectroscopy, and photoelectrochemical studies The films were obtained with a well-defined composition, very close to the expected one. Homogeneous deposit with chalcopyrite structure was produced. A In2O3 phase was also observed. Annealing of the film improved the crystallinity of the films. Good photo response, an appropriate absorption coefficient, and a band gap of 1.09 eV were obtained.  相似文献   
7.
The CuInSe2 absorber was synthesized by non-vacuum process with a simple and low-cost method, which fabricated absorber layer of thin-film solar cell. The extra amount of Se was added into the ink to help reduction of the oxide and solid Se fountain was used to provide Se atmosphere during the selenization progress. The influence of same factors was investigated, such as the time of reduction in H2, the time of selenization and the Se vapor pressure. The selenizaion, processed at 550 °C for 60 min with the Se vapor pressure at 1.90 kPa, resulted in high quality CuInSe2 layer with very good chemical composition.  相似文献   
8.
用双靶磁控溅射的方法在玻璃衬底上制备了Cu11In9合金薄膜,然后将Cu11In9合金薄膜封闭在石墨盒中进行真空硒化退火得到CuInSe2薄膜.用扫描电子显微镜(SEM)和X射线粉末衍射(XRD)对CuInSe2薄膜进行了表征,结果表明CuInSe2薄膜具有单一的晶相,均匀、致密的结构,以及粒径超过了3μm的晶粒. 关键词: 铜铟硒多晶薄膜 磁控溅射 真空硒化 太阳能电池  相似文献   
9.
We have developed a simple solvothermal method by using solvent mixtures of ethylenediamine with ethanol and deionized water to produce the CuInSe2 nanoalloys. The phase structure, morphology, elemental composition and optical band gap (Eg) of synthesized the CuInSe2 nanoalloys were characterized by Raman spectroscopy, X‐ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive X‐ray spectroscopy (EDS) and zeta potential particle sizer measurements. The factors affecting product purity in the mixed solvent are also discussed. The results showed that CuInSe2 nanoalloys with a chalcopyrite tetragonal structure were produced by adjusting the ratio of ethylenediamine to ethanol (1:2.33 by volume) and their corresponding energy band gap was found to be 1.27 eV. In addition, we prepared and coated the CuInSe2 ink on the Mo substrate by the doctor blade method to produce a compact thin film. The crystallinity and the morphology of these polycrystalline CuInSe2 films were characterized.  相似文献   
10.
Local p‐n junction were obtained under room temperature conditions in CuInSe2 by applying strong electric field through small indium and copper contacts. The current density voltage (J‐V) and the capacitance‐voltage (C‐V) of three different samples were measured at room temperature. The J‐V method shows that the current is dominated by the drift component of the injected carriers. The C‐V method gave a barrier height of 1.04 eV for all three samples which agrees with the reported energy gap of this material. Analysis of these results indicate that the p‐n junction structures formed by strong electric fields are hihgly compensated and the current transport is dominated by the space charge limited current effect.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号