首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   86篇
  免费   0篇
  国内免费   2篇
化学   27篇
晶体学   2篇
物理学   59篇
  2023年   1篇
  2022年   2篇
  2021年   4篇
  2020年   1篇
  2019年   1篇
  2018年   2篇
  2017年   1篇
  2016年   5篇
  2015年   8篇
  2014年   2篇
  2013年   3篇
  2012年   9篇
  2011年   9篇
  2010年   9篇
  2009年   9篇
  2008年   3篇
  2007年   8篇
  2006年   4篇
  2005年   1篇
  2004年   2篇
  2003年   3篇
  2002年   1篇
排序方式: 共有88条查询结果,搜索用时 15 毫秒
1.
Athermal elasticity for some ceramic materials (α-Al2O3, SiC (α and β phases), TiO2 (rutile and anatase), hexagonal AlN and TiB2, cubic BN and CaF2, and monoclinic ZrO2) have been investigated via density functional theory. Energy-volume equation-of-state computations to obtain the zero pressure equilibrium volume and bulk modulus as well as computations of the full elastic constant tensor of these ceramics at the experimental zero pressure volume have been performed. The present results for the single crystal elasticity are in good agreement with experiments both for the aggregate properties (bulk and shear modulus) and the elastic anisotropy. In contrast, a considerable discrepancy for the zero pressure bulk modulus of some ceramics evaluated from the energy-volume fit to the computational zero pressure volume has been observed.  相似文献   
2.
The molecular structure and rotational motion of the ionic liquid 1-butyl-3-methylimidazolium hexafluorophosphate ([BMIM][PF6]) were studied over a wide temperature range using the Bloembergen–Purcell–Pound 13C NMR spin–lattice relaxation method and NOE factors. Examination of the spin–lattice relaxation times (T 1) and the rates (R 1=1/T 1) of the 1-butyl-3-methylimidazolium cation reveals the relative motions of each carbon in the imidazolium cation. The rotational characteristics of the [BMIM] cation are supported by ab-initio molecular structures of [BMIM][PF6] using density functional theory (DFT) and Hartree–Fock (HF) methods. The ab-initio gas phase structures of [BMIM][PF6] indicate that the 1-butyl-3-methylimidazolium C2 hydrogen, the ring methyl group, and the butyl side-chain hydrogen atoms form hydrogen bonds with the hexafluorophosphate anion.  相似文献   
3.
4.
Solute–solvent interactions are proxies for understanding how the electronic density of a chromophore interacts with the environment in a more exhaustive way. The subtle balance between polarization, electrostatic, and non-bonded interactions need to be accurately described to obtain good agreement between simulations and experiments. First principles approaches providing accurate configurational sampling through molecular dynamics may be a suitable choice to describe solvent effects on solute chemical–physical properties and spectroscopic features, such as optical absorption of dyes. In this context, accurate energy potentials, obtained by hybrid implicit/explicit solvation methods along with employing nonperiodic boundary conditions, are required to represent bulk solvent around a large solute–solvent cluster. In this work, a novel strategy to simulate methanol solutions is proposed combining ab initio molecular dynamics, a hybrid implicit/explicit flexible solvent model, nonperiodic boundary conditions, and time dependent density functional theory. As case study, the robustness of the proposed protocol has been gauged by investigating the microsolvation and electronic absorption of the anionic green fluorescent protein chromophore in methanol and aqueous solution. Satisfactory results are obtained, reproducing the microsolvation layout of the chromophore and, as a consequence, the experimental trends shown by the optical absorption in different solvents.  相似文献   
5.
Sulphur-headgroup organic molecules have been chemisorbed on Cu(1 0 0) as self-assembled monolayers (SAMs) in highly-ordered two-fold symmetry structures, and the electronic states induced at the interface have been measured by photoemission: a close similarity of the main interface states for methane-thiolate and mercaptobenzoxazole on Cu(1 0 0) in the same p(2 × 2)-phase is observed. The bonding states for methane-thiolate/Cu(1 0 0) in the p(2 × 2) and c(2 × 2) structures have been compared to ab-initio calculation of the total density of states (DOS) for the S/Cu(1 0 0) system in the same phases. The major role of the S-Cu bonding to determine the density of state evolution at the interface is brought to light. The observed differences in the two phases depend mainly on the charge distribution associated to the different molecular packing, with a minor role of the radical group.  相似文献   
6.
We report ab-initio calculations of the structural, electronic, magnetic and optical properties of the alloy Cd1-xMnxTe as a function of the Mn concentration ‘x’. Ab-initio calculations are based on the density functional theory (DFT) within the generalized gradient approximation (GGA). The calculated lattice constants of the Cd1-xMnxTe alloys exhibit Vegard's law downward bowing parameter. For the minority spin channel the Fermi level shifts toward higher energy with the value of ‘x’ in Cd1-xMnxTe. The spin-exchange splitting energy Δx(d) increases with increasing ‘x’ in Cd1-xMnxTe and the values of p-d exchange splitting energy Δx(pd) of Cd1-xMnxTe show that the effective potential for the minority spin is more attractive than that for the majority spin. The values of exchange constants N0α and N0β obtained for Cd1-xMnxTe are in agreement with the reported data. The magnetic moment per Mn atom reduces from its free space charge value of 5μB to around 4μB due to p-d hybridization and this results into an appearance of small local magnetic moments on the non-magnetic Cd and Te sites. The absorption threshold shifts toward higher energy and the static refractive index decreases with the increasing value of ‘x’ in Cd1-xMnxTe.  相似文献   
7.
We have investigated the structural, electronic and magnetic properties of the diluted magnetic semiconductor (DMS) Cd1−xMnxTe (for x=0.75 and 1.0) in the zinc blende (B3) phase by employing the ab-initio method. Calculations were performed by using the full potential linearized augmented plane wave plus local orbitals (FP-L/APW+lo) method within the frame work of spin-polarized density functional theory (SP-DFT). The electronic exchange-correlation energy is described by generalized gradient approximation (GGA). We have calculated the lattice parameters, bulk modulii and the first pressure derivatives of the bulk modulii, spin-polarized band structures, and total and local densities of states. We estimated the spin-exchange splitting energies Δx(d) and Δx(pd) produced by the Mn3d states, and we found that the effective potential for the minority spin is more attractive than that of the majority spin. We determine the s-d exchange constant N0α (conduction band) and p-d exchange constant N0β (valence band) and these somewhat agree with a typical magneto-optical experiment. The value of calculated magnetic moment per Mn impurity atom is found to be 4.08 μB for Cd0.25Mn0.75Te and 4.09 μB for Cd0.0Mn1.0Te. Moreover, we found that p-d hybridization reduces the local magnetic moment of Mn from its free space charge value of 5.0 μB and produces small local magnetic moments on the nonmagnetic Cd and Te sites.  相似文献   
8.
The first theoretical study of the effect of the final-state interaction on the initial core–hole lifetime is presented. The 4s-hole lifetime width of Sn metal is calculated by an ab-initio atomic many-body theory (Green’s function method). When the final-state interaction in the 4p4d two-hole state, created by the 4s−1−4p−14d−1 f super Coster–Kronig (CK) transition of the initial 4s hole, is explicitly taken into account, the ab-initio atomic many-body calculation of the 4s-hole X-ray photoelectron spectroscopy (XPS) spectrum of Sn atom can provide excellent agreement with experiment in both the 4s-hole energy and the 4s-hole lifetime width. Otherwise, the many-body calculation underestimates considerably the 4s-hole lifetime width. The 4p4d two-hole state interacts strongly with the 4d triple-hole state by the 4p−14d−1−4d−3 f super CK transition. The interaction affects greatly the initial 4s-hole lifetime width.  相似文献   
9.
Cluster modelling based on ab-initio calculations testifies lack of intermediate optimally-constrained phase in binary GexSe100-x system within expected reversibility window (20 ≤ × < 26) in terms of global connectivity. Network of these glasses within 20 ≤ × < 26 compositional range can be composed of over-constrained “outrigger raft” structural motives built of two edge- and four corner-shared GeSe4/2 tetrahedra interconnected via optimally-constrained ≡ Ge―Se―Se―Ge≡ bridges, extra Se atoms forming ring-like configurations instead of Se―Se dimers.  相似文献   
10.
Recent reports of the melting curve of sodium at high pressure have shown that it has a very steep descent after a maximum of around 1000 K at 31 GPa. This maximum does not occur due to a solid-solid phase transition. According to the Lindemann criterion, this behaviour should be apparent in the evolution of the Debye temperature with pressure. In this work, we have performed an “ab initio” analysis of the behaviour of both the Debye temperature and the elastic constants up to 102 GPa, and find a clear trend at high pressure that should cause a noticeable effect on the melting curve.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号