首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3398篇
  免费   133篇
  国内免费   667篇
化学   3747篇
晶体学   13篇
力学   64篇
综合类   51篇
数学   42篇
物理学   281篇
  2024年   3篇
  2023年   13篇
  2022年   29篇
  2021年   62篇
  2020年   92篇
  2019年   92篇
  2018年   64篇
  2017年   118篇
  2016年   125篇
  2015年   77篇
  2014年   116篇
  2013年   275篇
  2012年   168篇
  2011年   172篇
  2010年   137篇
  2009年   161篇
  2008年   163篇
  2007年   217篇
  2006年   208篇
  2005年   196篇
  2004年   199篇
  2003年   199篇
  2002年   163篇
  2001年   141篇
  2000年   137篇
  1999年   126篇
  1998年   112篇
  1997年   106篇
  1996年   104篇
  1995年   78篇
  1994年   65篇
  1993年   58篇
  1992年   49篇
  1991年   45篇
  1990年   35篇
  1989年   31篇
  1988年   25篇
  1987年   6篇
  1986年   5篇
  1985年   3篇
  1984年   5篇
  1983年   5篇
  1982年   3篇
  1981年   5篇
  1980年   3篇
  1979年   1篇
  1978年   1篇
排序方式: 共有4198条查询结果,搜索用时 15 毫秒
1.
A reversibly cross‐linked epoxy resin with efficient reprocessing and intrinsic self‐healing was prepared from a diamine Diels‐Alder (DA) adduct cross‐linker and a commercial epoxy oligomer. The newly synthesized diamine cross‐linker, comprising a DA adduct of furan and maleimide moieties, can cure epoxy monomer/oligomer with thermal reversibility. The reversible transition between cross‐linked state and linear architecture endows the cured epoxy with rapid recyclability and repeated healability. The reversibly cross‐linked epoxy fundamentally behaves as typical thermosets at ambient conditions yet can be fast reprocessed at elevated temperature like thermoplastics. As a potential reversible adhesive, the epoxy polymer with adhesive strength values about 3 MPa showed full recovery after repeated fracture‐thermal healing processes. The methodology explored in this contribution provides new insights in modification of conventional engineering plastics as functional materials. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2015 , 53, 2094–2103  相似文献   
2.
1. INTRODUCTION In the process of coking plant, about 30%~35% sulfur is transformed to H2S and some other sulfide, which form impurity in coal gas together with NH3 and HCN. Only 0.1% H2S containing in air can lead to die, so it is very important to carry on desulphurization and decyanation with coal gas [1~3]. Currently desulphurization and decyanation craft technique have Dry Oxidation Technology, Wet Oxidation Technology and Liquid Absorption Technology [2] three main kinds. The…  相似文献   
3.
离子交换富集-导数火焰原子吸收法测定自来水中Cu,Fe和Zn   总被引:7,自引:0,他引:7  
本文研究了用 2 0 1× 7阳离子交换树脂对自来水中的微量元素进行交换富集 ,采用微量脉冲进样 导数火焰原子吸收法测定富集后溶液中的Cu ,Fe和Zn ,该方法灵敏度分别为 0 2 9,0 5 9和 0 0 6 μg·L- 1 ,精密度分别为 4 2 8% ,1 95 %和 2 2 8% ,检测限分别为 1 2 8,5 85和 0 6 8μg·L- 1 ,回收率分别为 91 13% ,10 1 34%和99 84 % ,本方法大大减少了需样量 ,简便快速 ,灵敏度高。  相似文献   
4.
Numerical simulation aspects, related to low Reynolds number free boundary viscous flows at micro and mesolevel during the resin impregnation stage of the liquid composite moulding process (LCM), are presented in this article. A free boundary program (FBP), developed by the authors, is used to track the movement of the resin front accurately by accounting for the surface tension effects at the boundary. Issues related to the global and local mass conservation (GMC and LMC) are identified and discussed. Unsuitable conditions for LMC and consequently GMC are uncovered at low capillary numbers, and hence a strategy for the numerical simulation of such flows is suggested. FBP encompasses a set of subroutines that are linked to modules in ANSYS. FBP can capture the void formation dynamics based on the analysis developed. We present resin impregnation dynamics in two dimensions. Extension to three dimensions is a subject for further research. Several examples are shown and efficiency of different stabilization techniques are compared. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   
5.
By combining frontal polymerization and radical‐induced cationic polymerization, it was possible to cure thick samples of an epoxy monomer bleached by UV light. The effect of the relative amounts of cationic photoinitiator and radical initiator was thoroughly investigated and was related to the front's velocity and its maximum temperature. The materials obtained were characterized by quantitative conversion also in the deeper layers, not reached by UV light. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 2066–2072, 2004  相似文献   
6.
Montmorillonite (MMT) was modified with the acidified cocamidopropyl betaine (CAB) and the resulting organo‐montmorillonite (O‐MMT) was dispersed in an epoxy/methyl tetrahydrophthalic anhydride system to form epoxy nanocomposites. The intercalation and exfoliation behavior of the epoxy nanocomposites were examined by X‐ray diffraction and transmission electron microscopy. The curing behavior and thermal property were investigated by in situ Fourier transform infrared spectroscopy and DSC, respectively. The results showed that MMT could be highly intercalated by acidified CAB, and O‐MMT could be easily dispersed in epoxy resin to form intercalated/exfoliated epoxy nanocomposites. When the O‐MMT loading was lower than 8 phr (relative to 100 phr resin), exfoliated nanocomposites were achieved. The glass‐transition temperatures (Tg's) of the exfoliated nanocomposite were 20 °C higher than that of the neat resin. At higher O‐MMT loading, partial exfoliation was achieved, and those samples possessed moderately higher Tg's as compared with the neat resin. O‐MMT showed an obviously catalytic nature toward the curing of epoxy resin. The curing rate of the epoxy compound increased with O‐MMT loading. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 1192–1198, 2004  相似文献   
7.
The microstructure and fracture behavior of epoxy mixtures containing two monomers of different molecular weights were studied. The variation of the fracture toughness by the addition of other modifiers was also investigated. Several amounts of high‐molecular‐weight diglycidyl ether of bisphenol A (DGEBA) oligomer were added to a nearly pure DGEBA monomer. The mixtures were cured with an aromatic amine, showing phase separation after curing. The curing behavior of the epoxy mixtures was investigated with thermal measurements. A significant enhancement of the fracture toughness was accompanied by slight increases in both the rigidity and strength of the mixtures that corresponded to the content of the high‐molecular‐weight epoxy resin. Dynamic mechanical and atomic force microscopy measurements indicated that the generated two‐phase morphology was a function of the content of the epoxy resin added. The influence of the addition of an oligomer or a thermoplastic on the morphologies and mechanical properties of both epoxy‐containing mixtures was also investigated. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 3920–3933, 2004  相似文献   
8.
The structure, morphology, and isothermal and nonisothermal crystallization of isotactic polypropylene/low‐molecular‐mass hydrocarbon resin blends (iPP/HR) (up to 20% in weight of HR) have been studied, using optical and electron microscopy, wide‐ and small‐angle X‐ray and differential scanning calorimetry. New structures and morphologies can be activated, using appropriate preparation and crystallization conditions and blend composition. For every composition and crystallization condition, iPP crystallizes in α‐form, with a spherulitic morphology. The size of iPP spherulites increases with resin content, whereas the long period decreases. In the range of crystallization temperatures investigated, HR modifies the birefringence of iPP spherulites, favoring the formation of radial lamellae and changing the ratio between tangential and radial lamellae. Spherulitic radial growth rates, overall crystallization rates, and melting temperatures are strongly affected by resin, monotonically decreasing with resin content. This confirms miscibility in the melt between the two components of the blends. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 3368–3379, 2004  相似文献   
9.
The fracture behavior of a core-shell rubber (CSR) modified epoxy is investigated using both fracture mechanics and microscopy tools. The CSR-modified epoxy is found to be toughened via numerous line-array cavitations of the CSR particles, followed by plastic flow of the epoxy matrix. The toughening effect via the above craze-like damage process is found to be as effective as that of the well-known widespread rubber cavitation/matrix shear yielding mechanisms. The conditions for triggering the craze-like damage appear to be both stress state and rubber concentration dependent. The type of rubber tougheners utilized also plays a critical role in triggering this rather unusual craze-like damage in epoxy systems. © 1993 John Wiley & Sons, Inc.  相似文献   
10.
Photoinitiated cationic polymerization of mono‐ and bifunctional epoxy monomers, namely cyclohexeneoxide (CHO), 4‐epoxycyclohexylmethyl‐3′,4′‐epoxycyclohexanecarboxylate (EEC), respectively by using sulphonium salts in the presence of hydroxylbutyl vinyl ether (HBVE) was studied. The real‐time FTIR spectroscopic, gel content determination, and thermal characterization studies revealed that both hydroxyl and vinyl ether functionalities of HBVE take part in the polymerization. During the polymerization, HBVE has the ability to react via both active chain end (ACE) and activated monomer mechanisms through its hydroxyl and vinyl ether functionalities, respectively. Thus, more efficient curing was observed with the addition of HBVE into EEC‐containing formulations. It was also demonstrated that HBVE is effective in facilitating the photoinduced crosslinking of monofunctional epoxy monomer, CHO in the absence of a conventional crosslinker. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 4914–4920, 2007  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号