首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  免费   1篇
化学   3篇
  2020年   2篇
  2018年   1篇
排序方式: 共有3条查询结果,搜索用时 15 毫秒
1
1.
In recent years, X-ray emission spectroscopy (XES) in the Kβ (3p-1s) and valence-to-core (valence-1s) regions has been increasingly used to study metal active sites in (bio)inorganic chemistry and catalysis, providing information about the metal spin state, oxidation state and the identity of coordinated ligands. However, to date this technique has been limited almost exclusively to first-row transition metals. In this work, we present an extension of Kβ XES (in both the 4p-1s and valence-to-1s [or VtC] regions) to the second transition row by performing a detailed experimental and theoretical analysis of the molybdenum emission lines. It is demonstrated in this work that Kβ2 lines are dominated by spin state effects, while VtC XES of a 4d transition metal provides access to metal oxidation state and ligand identity. An extension of Mo Kβ XES to nitrogenase-relevant model complexes shows that the method is sufficiently sensitive to act as a spectator probe for redox events that are localized at the Fe atoms. Mo VtC XES thus has promise for future applications to nitrogenase, as well as a range of other Mo-containing biological cofactors. Further, the clear assignment of the origins of Mo VtC XES features opens up the possibility of applying this method to a wide range of second-row transition metals, thus providing chemists with a site-specific tool for the elucidation of 4d transition metal electronic structure.  相似文献   
2.
Proton transfer reactions are of central importance to a wide variety of biochemical processes, though determining proton location and monitoring proton transfers in biological systems is often extremely challenging. Herein, we use two‐color valence‐to‐core X‐ray emission spectroscopy (VtC XES) to identify protonation events across three oxidation states of the O2‐activating, radical‐initiating manganese–iron heterodinuclear cofactor in a class I‐c ribonucleotide reductase. This is the first application of VtC XES to an enzyme intermediate and the first simultaneous measurement of two‐color VtC spectra. In contrast to more conventional methods of assessing protonation state, VtC XES is a more direct probe applicable to a wide range of metalloenzyme systems. These data, coupled to insight provided by DFT calculations, allow the inorganic cores of the MnIVFeIV and MnIVFeIII states of the enzyme to be assigned as MnIV(μ‐O)2FeIV and MnIV(μ‐O)(μ‐OH)FeIII, respectively.  相似文献   
3.
In recent years, X‐ray emission spectroscopy (XES) in the Kβ (3p‐1s) and valence‐to‐core (valence‐1s) regions has been increasingly used to study metal active sites in (bio)inorganic chemistry and catalysis, providing information about the metal spin state, oxidation state and the identity of coordinated ligands. However, to date this technique has been limited almost exclusively to first‐row transition metals. In this work, we present an extension of Kβ XES (in both the 4p‐1s and valence‐to‐1s [or VtC] regions) to the second transition row by performing a detailed experimental and theoretical analysis of the molybdenum emission lines. It is demonstrated in this work that Kβ2 lines are dominated by spin state effects, while VtC XES of a 4d transition metal provides access to metal oxidation state and ligand identity. An extension of Mo Kβ XES to nitrogenase‐relevant model complexes shows that the method is sufficiently sensitive to act as a spectator probe for redox events that are localized at the Fe atoms. Mo VtC XES thus has promise for future applications to nitrogenase, as well as a range of other Mo‐containing biological cofactors. Further, the clear assignment of the origins of Mo VtC XES features opens up the possibility of applying this method to a wide range of second‐row transition metals, thus providing chemists with a site‐specific tool for the elucidation of 4d transition metal electronic structure.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号