首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  免费   1篇
化学   3篇
  2021年   1篇
  2018年   1篇
  2008年   1篇
排序方式: 共有3条查询结果,搜索用时 15 毫秒
1
1.
The development of highly selective, chemically stable and moisture‐resistant adsorbents is a key milestone for gas separation. Porous carbons featured with random orientation and cross‐linking of turbostratic nanodomains usually have a wide distribution of micropores. Here we have developed a thermoregulated phase‐transition‐assisted synthesis of carbon nanoplates with more than 80 % sp2 carbon, unimodal ultramicropore and a controllable thickness. The thin structure allows oriented growth of carbon crystallites, and stacking of crystallites in nearly parallel orientation are responsible for the single size of the micropores. When used for gas separation from CH4, carbon nanoplates exhibit high uptakes (5.2, 5.3 and 5.1 mmol g?1) and selectivities (7, 71 and 386) for CO2, C2H6 and C3H8 under ambient conditions. The dynamic adsorption capacities are close to equilibrium uptakes of single components, further demonstrating superiority of carbon nanoplates in terms of selectivity and sorption kinetics.  相似文献   
2.
Low-concentration ethane capture is crucial for environmental protection and natural gas purification. The ideal physisorbent with strong C2H6 interaction and large C2H6 uptake at low-concentration level has rarely been reported, due to the large pKa value and small quadrupole moment of C2H6. Herein, we demonstrate the perfectly size matching between the ultramicropore (pore size of 4.6 Å) and ethane (kinetic diameter of 4.4 Å) in a nickel pyridine-4-carboxylate metal–organic framework (IISERP-MOF 2 ), which enables the record-breaking performance for low concentration C2H6 capture. IISERP-MOF 2 exhibits the large C2H6 adsorption enthalpy of 56.7 kJ/mol, and record-high C2H6 uptake at low pressure of 0.01–0.1 bar and 298 K (1.8 mmol/g at 0.01 bar). Molecule simulations and C2H6-loading crystal structure analysis revealed that the maximized interaction sites in IISERP-MOF 2 with ethane molecule originates the strong C2H6 adsorption. The dynamic breakthrough experiments for gas mixtures of C2H6/N2(1/999, v/v) and C2H6/CH4 (5/95, v/v) proved the excellent low-concentration C2H6 capture performance.  相似文献   
3.
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号