首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   16篇
  免费   1篇
化学   17篇
  2023年   1篇
  2020年   1篇
  2017年   1篇
  2016年   1篇
  2013年   1篇
  2012年   1篇
  2011年   1篇
  2009年   3篇
  2005年   1篇
  2004年   2篇
  2003年   3篇
  2002年   1篇
排序方式: 共有17条查询结果,搜索用时 15 毫秒
1.
Three-step reactions starting from 2-chlorotropone with barbituric acid afforded novel 7,9-dimethylcyclohepta[b]pyrimido[5,4-d]furan-8(7H),10(9H)-dionylium tetrafluoroborate (9·BF4), which is the isoelectronic compound of the 5-ethyl-3-methyllumiflavinium ion. The stability of cation 9 is expressed by the pKR+ value, which was determined spectrophotometrically, as ca. 6.0. The electrochemical reduction of 9 exhibited low reduction potential at −0.58 (V vs Ag/AgNO3), upon cyclic voltammetry (CV). In a search for the reactivity, reactions of 9·BF4 with some nucleophiles, hydroxide, hydride, amines, thiols, and methanol, were carried out to exhibit that the introduction of nucleophiles is dependent on the nucleophile itself. The photo-induced oxidation reactions of some alcohols catalyzed by 9·BF4 under aerobic conditions were carried out to give the corresponding carbonyl compounds in more than 100% yield [based on compound 9·BF4], suggesting the oxidizing function of 9·BF4 toward alcohols in the autorecycling process. The UV-vis and fluorescence spectra of 9 were studied to suggest the electron transfer from alcohols to the excited 9.  相似文献   
2.
Tropylium bromide undergoes noncatalyzed, regioselective additions to a large variety of Michael acceptors. In this way, acrylic esters are converted into β‐bromo‐α‐cycloheptatrienylpropionic esters. The reactions are interpreted as nucleophilic attack of bromide ions at the electron‐deficient olefins and the approach of the tropylium ion to the incipient carbanion. Quantum chemical calculations were performed to elucidate the analogy to the amine‐ or phosphine‐catalyzed Rauhut–Currier reactions. Subsequent synthetic transformations of the bromo‐cycloheptatrienylated adducts are reported.  相似文献   
3.
The formation of the tropylium ion, C7H7+, in the mass spectrum of toluene is a chemical process that has been extensively studied. There is, however, still debate as to the structure of the moieties and the reaction pathways involved. This work presents the first computationally complete reaction schemes for the formation of tropylium from toluene to be reported. The calculations were performed at the HF/6‐31G(d, p) and the DFT/B3LYP/6‐311++G(2d) levels of theory using Gaussian 03W. The previously unreported optimized structures and energies for a transition state and an intermediate in one scheme and a transition state in the other have been determined. These results are consistent with the previously reported literature and the available experimental data. © 2009 Wiley Periodicals, Inc. Int J Quantum Chem, 2009  相似文献   
4.
5.
The first three primary members of the non‐benzenoid carbocyclic aromatic ion family, namely cyclopropenium, cyclopentadienide, and cycloheptatrienium (tropylium) ions, have planar cyclic structures with (4n +2)π electrons in fully conjugated systems. They fulfill Hückel's rule for aromaticity and hence possess extraordinary stability. Since the historic discovery of tropylium bromide in the late 19th Century, these non‐benzenoid aromatic ions have attracted a lot of attention because of their unique combination of stability and reactivity. The charge on the aromatic ions makes them more prone to nucleophilic/electrophilic reactions than the neutral benzenoid counterparts. Within the last seven years, there has been a large number of investigations in utilizing aromatic ions to mediate organic reactions. This Review highlights these recent developments and discusses the potential of aromatic ions in promoting synthetically useful organic transformations.  相似文献   
6.
7.
Benzylpyridinium ions are often used as ‘thermometer ions’ in order to evaluate the internal energy distribution of the ions formed in sources of mass spectrometers. However, the detailed fragmentation pathways of these parent ions were not well established. In particular, fragmentation involving a rearrangement (RR) process may be influencing the simulated distribution curves. In a previous study, we suggested that such RR actually occurred under electrospray ionization/mass spectrometry (ESI/MS) and fast atom bombardment/mass spectrometry (FAB/MS) experiments. Here, we present a systematic study of different substituted benzylpyridinium ions. Theoretical calculations showed that RR fragmentation leading to substituted tropylium ions could occur under ‘soft ionization’ conditions, such as ESI or FAB. Experimental results obtained under gas‐phase reactivity conditions showed that some substituted benzylpiridinium compounds actually undergo RR fragmentations under ESI/MS conditions. Mass‐analyzed kinetic experiments were also carried out to gain information on the reaction pathways that actually occur, and these experimental results are in agreement with the reaction pathways theoretically proposed. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   
8.
9.
10.
Fragmentation pathways of unsubstituted and substituted benzylpyridinium compounds were investigated using mass-analysed kinetic energy (MIKE) technique in combination with high level of quantum chemical calculations in the gas phase. Fast atom bombardment (FAB) source was used for ionisation of the studied compounds. The formation of both benzylium and tropylium species were investigated. Hybrid Hartree-Fock/Density Functional Theory calculations have been performed to assess the geometries and the energies of the transition states and intermediates. For each cases, different reaction pathways were investigated, and particularly in the case of the formation of tropylium species, the formation of the seven-membered ring before or after the loss of pyridine were studied. The effect of para-methyl and para-methoxy substituents on the activation energy of the rearrangement process to form thermodynamically stable tropylium compounds has been studied. Theoretical calculations showed competition between direct bond cleavage and rearrangement reactions to form benzylium and tropylium compounds, respectively. Experimental results also suggested that the rearrangement process takes place to yield stable tropylium under "soft ionisation techniques", such as FAB.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号