首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   86篇
  免费   5篇
  国内免费   2篇
化学   91篇
数学   1篇
物理学   1篇
  2023年   1篇
  2022年   1篇
  2021年   4篇
  2020年   3篇
  2018年   1篇
  2017年   4篇
  2016年   3篇
  2015年   4篇
  2014年   2篇
  2013年   5篇
  2012年   2篇
  2011年   3篇
  2010年   5篇
  2009年   4篇
  2008年   6篇
  2007年   2篇
  2006年   5篇
  2005年   2篇
  2004年   1篇
  2003年   2篇
  2002年   1篇
  2001年   2篇
  2000年   4篇
  1999年   6篇
  1998年   3篇
  1997年   4篇
  1996年   3篇
  1995年   1篇
  1993年   4篇
  1992年   5篇
排序方式: 共有93条查询结果,搜索用时 15 毫秒
1.
The hydrophobicity of silicone elastomers can compromise their utility in some biomaterials applications. Few effective processes exist to introduce hydrophilic groups onto a polysiloxane backbone and subsequently crosslink the material into elastomers. This problem can be overcome through the utilization of metal‐free click reactions between azidoalkylsilicones and alkynyl‐modified silicones and/or PEGs to both functionalize and crosslink silicone elastomers. Alkynyl‐functional PEG was clicked onto a fraction of the available azido groups of a functional polysiloxane, yielding azido reactive PDMS‐g‐PEG rake surfactants. The reactive polymers were then used to crosslink alkynyl‐terminated PDMS of different molecular weights. Using simple starting materials, this generic yet versatile method permits the preparation and characterization of a library of amphiphilic thermoset elastomers that vary in their composition, crosslink density, elasticity, hydrogel formation, and wettability. An appropriate balance of PEG length and crosslink density leads to a permanently highly wettable silicone elastomer that demonstrated very low levels of protein adsorption. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2015 , 53, 1082–1093  相似文献   
2.
An in situ ultrasonic spectroscopy technique was used to study the ring‐opening metathesis polymerization of dicyclopentadiene catalyzed by bis(tricyclohexylphosphine)benzylidene ruthenium dichloride. A reaction cell employing a flexible poly(ethylene terephthalate) window for pulse echo ultrasonic spectroscopy was used to monitor the polymerization. The changes in the density, wave speed, acoustic modulus, and attenuation were all simultaneously monitored. In comparison with Fourier transform infrared (FTIR) spectroscopy data, the changes in the density, velocity, and modulus only accurately measured the rate constant for the metathesis of the cyclopentyl unsaturation. The ultrasonic values were within 6% of the values determined by FTIR. The activation energy for metathesis of the cyclopentyl unsaturation was 84 kJ mol?1, following first‐order kinetics. Rate constants for the polymerization of the norbornyl unsaturation could not be determined by ultrasound. The gel point, vitrification, and qualitative information about the reaction rate could be determined from the change in the attenuation. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 41: 1323–1333, 2003  相似文献   
3.
A theoretical approach to thermoset cure kinetics based on Arrhenius kinetics and mobility was developed by considering the activation of the reacting group and chain mobility as elementary steps for reaction. This extended kinetic equation was successfully applied to the curing of an epoxy by an amine, the trimerization of a cyanate, and to the polymerization of methyl methacrylate. Full agreement between theory and experimental data was obtained in all cases. The activation energies for chain mobility were exceptionally low (0.3–1 kJ/mol for bisphenol-A-based epoxy and cyanate) which indicates that the structural units must undergo only small-angle rotational oscillations to allow a reaction. A theoretical time–temperature–transformation (TTT) diagram is also presented. © 1993 John Wiley & Sons, Inc.  相似文献   
4.
A 2,6‐dimethyl phenol–dipentene adduct was synthesized from dipentene (DP) and 2,6‐dimethyl phenol, and then a 2,6‐dimethyl phenol–DP epoxy was synthesized from the reaction of the resultant 2,6‐dimethyl phenol–DP adduct and epichlorohydrin. The proposed structures were confirmed by Fourier transform infrared, elemental analysis, mass spectra, NMR spectra, and epoxy equivalent weight titration. The synthesized 2,6‐dimethyl phenol–DP adduct was cured with 4,4‐diamino diphenyl methane, phenol novolac, 4,4‐diamino diphenyl sulfone, and 4,4‐diamino diphenyl ether. The thermal properties of the cured epoxy resins were studied with differential scanning calorimetry, dynamic mechanical analysis, dielectric analysis, and thermogravimetric analysis. These data were compared with those for the bisphenol A epoxy system. The cured 2,6‐dimethyl phenol–DP epoxy exhibited a lower dielectric constant (ca. 3.1), a lower dissipation factor (ca. 0.065), a lower modulus, lower thermal stability (5% degradation temperature = 366–424 °C), and lower moisture absorption (1.21–2.18%) than the bisphenol A system but a higher glass‐transition temperature (ca. 173–222 °C) than that of bisphenol A system. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 4084–4097, 2002  相似文献   
5.
Four new epoxy monomers have been synthesized and characterized as part of a program to prepare novel liquid crystal thermoset (LCT) materials. Three of the new epoxy monomers contained a biphenyl mesogen and were not liquid crystalline (LC). The remaining epoxy monomer, which contained a 1,4-dibenzoyloxybenzene mesogen, was synthesized in an overall yield of 30% and displayed a broad (83°C) nematic liquid crystalline phase. The new liquid crystalline epoxy monomer was cured at 120°C and postcured at 175°C with a stoichiometric amount of 1,4-phenylenediamine. The thermal transitions of the resulting LCT were studied by differential scanning calorimetry (DSC), polarized light optical microscopy (POM), thermomechanical analysis (TMA), and wide angle x-ray diffraction (WAXD) as a function of cure time and temperature. A process characterization diagram was constructed which shows that LCTs based on this new LC monomer can be processed in the liquid crystalline phase over a broad range of times and temperatures. Qualitative agreement with previous epoxy LCT results was found, as LCT's with smectic phases and without clearing temperatures were observed at long cure times (high crosslink densities), whereas nematic phases with clearing temperatures predominated in networks at short cure times (low crosslink densities). © 1993 John Wiley & Sons, Inc.  相似文献   
6.
A hyperbranched aromatic polyester (HBPOH) has been synthesized, and poly(ε‐caprolactone) arms have been grown on some of its end hydroxyl groups (HBPCL). These modifiers have been used in cationic diglycidyl ether of bisphenol A formulations cured with ytterbium triflate as cationic initiator. The effect of HBPOH and HBPCL on the curing kinetics has been studied using differential scanning calorimetry (DSC). The obtained materials have been characterized by dynamomechanical analysis, DSC, thermogravimetric analysis and mechanical tests. The modifiers are incorporated into the thermosetting network because of the participation of the end hydroxyl groups in the cationic curing of epoxides by the activated monomer mechanism. Homogeneous thermosets have been obtained with a remarkable increase in impact strength without sacrificing elastic modulus or hardness. A compromise between the rigid structure of the aromatic hyperbranched core and the flexibilizing effect of the poly(ε‐caprolactone) arms is believed to be responsible for the overall thermal and mechanical properties of the materials. The use of these polymeric modifiers increases the thermal stability of the resulting materials because of the low degradability of the aromatic ester groups in the hyperbranched core and the incorporation of the modifier into the network structure. However, the presence of such ester groups makes them reworkable by hydrolysis or alcoholysis in an alkaline medium, thus opening a way for recovery of valuable substrates. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   
7.
Surface welding effect of covalent adaptable network (CAN) polymers enables self‐healing, reprocessing and recycling of thermosets, but little is known about their welding behaviors during repeated welding‐peeling cycles. In this article, we study the cyclic welding effect of an epoxy based thermal‐sensitive CAN. Surface roughness is generated by rubbing the sample on sandpapers with different grid sizes. The welding‐peeling cycles are repeated on the same pair of samples for five times, with roughness amplitude and interfacial fracture energy measured in each cycle. It is shown that the roughness gradually decreases during the repeated welding cycles, especially when a long welding time or high welding pressure is applied. Even though lower roughness amplitude promotes the contact area, the interfacial fracture energy reduces due to the increased BER activation energy after long‐time heating. A multiscale constitutive model is adopted, where we incorporate an explicit expression of interfacial contact area as a function of root‐mean‐square roughness parameter. The model is able to capture the evolving interfacial fracture energy during repeated welding cycles by using the measured roughness parameter, network modulus and BER activation energy. The study provides theoretical basis for the design and applications of CANs involving cyclic welding‐peeling operations. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2018 , 56, 402–413.  相似文献   
8.
The thermal degradation of an epoxy system consisting of a diglycidyl ether of bisphenol A (DGEBA, n=0) and m-xylylenediamine (m-XDA) was studied by both thermogravimetric analysis (TG) and dielectric analysis (DEA). It has been checked a deviation of the typical behaviour in the Arrhenius plot expected for this kind of systems, owing to the thermal degradation. Both, structural relaxation time and conductivity values, were represented as a function of the mass loss, that allow a relationship to be obtained between characteristic relaxation time and the degree of degradation at the beginning of the degradation process.  相似文献   
9.
Epoxy polymers (EPs) derived from soybean oil with varied chemical structures are synthesized. These polymers are then cured with anhydrides to yield soybean‐oil‐derived epoxy thermosets. The curing kinetic, thermal, and mechanical properties are well characterized. Due to the high epoxide functionality per epoxy polymer chain, these thermosets exhibit tensile strength over an order of magnitude higher than a control formulation with epoxidized soybean oil. More importantly, thermosetting materials ranging from soft elastomers to tough thermosets can be obtained simply by using different EPs and/or by controlling feed ratios of EPs to anhydrides.

  相似文献   

10.
The experimental results of viscoelastic mechanical tests, at five different levels of conversion, are reported for a thermoset composite matrix system toughened with an appropriate percentage of a thermoplastic polymer. The results from static tests are used to construct the master curves at a specific degree of cure, while the shift factors are compared with the corresponding values from dynamic experiments in order to assess the validity of the time-temperature superposition for each conversion. Neat resin plates were cured accurately, according to the full kinetics model for a dynamic and isothermal temperature regime; the conversion gradient in the plane and across the thickness of the plates was assessed by a thermal analysis of samples taken from different locations before extracting the samples from them. The viscoelastic behaviour of the resin matrix showed a sensible difference in the relaxation time spectrum upon conversion according to the provisional trend of mobility theory; a higher conversion induced a horizontal shift of the principal relaxation time for each level of conversion, which could be related very well to the glass transition at the same conversion. Good results were also obtained for the ultimate modulus of the resin at a temperature just before the onset of the co-curing phase for partially cured samples. Russian translation published in Mekhanika Kompozitnykh Materialov, Vol. 44, No. 2, pp. 265–278, March–April, 2008.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号