首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   62篇
  免费   12篇
  国内免费   6篇
化学   70篇
力学   1篇
物理学   9篇
  2024年   1篇
  2022年   17篇
  2021年   10篇
  2020年   13篇
  2019年   8篇
  2018年   4篇
  2017年   2篇
  2016年   4篇
  2015年   7篇
  2014年   5篇
  2013年   4篇
  2012年   1篇
  2011年   1篇
  2010年   2篇
  2009年   1篇
排序方式: 共有80条查询结果,搜索用时 0 毫秒
1.
Multifunctional magnetic microcapsules (MMCs) for the combined cancer cells hyperthermia and chemotherapy in addition to MR imaging are successfully developed. A classical layer‐by‐layer technique of oppositely charged polyelectrolytes (poly(allylamine hydrochloride) (PAH) and poly(4‐styrene sulfonate sodium) (PSS)) is used as it affords great controllability over the preparation together with enhanced loading of the chemotherapeutic drug (doxorubicin, DOX) in the microcapsules. Superparamagnetic iron oxide (SPIOs) nanoparticles are layered in the system to afford MMC1 (one SPIOs layer) and MMC2 (two SPIOs layers). Most interestingly, MMC1 and MMC2 show efficient hyperthermia cell death and controlled DOX release although their magnetic saturation value falls below 2.5 emu g?1, which is lower than the 7–22 emu g?1 reported to be the minimum value needed for biomedical applications. Moreover, MMCs are pH responsive where a pH 5.5 (often reported for cancer cells) combined with hyperthermia increases DOX release predictably. Both systems prove viable when used as T2 contrast agents for MR imaging in HeLa cells with high biocompatibility. Thus, MMCs hold a great promise to be used commercially as a theranostic platform as they are controllably prepared, reproducibly enhanced, and serve as drug delivery, hyperthermia, and MRI contrast agents at the same time.  相似文献   
2.
Bis-arene sandwich complexes are generally prepared by the Fischer-Hafner reaction, which conditions are incompatible with most O- and N- functional groups. We report a new way for the synthesis of sandwich type complexes [Re(η6-arene)2]+ and [Re(η6-arene)(η6-benzene)]+ from [Re(η6-napht)2]+ and [Re(η6-napht)(η6-benzene)]+, with functionalized arenes and pharmaceuticals. N-methylpyrrolidine (NMP) facilitates the substitution of naphthalene with the incoming arene. A series of fully characterized rhenium sandwich complexes with simple arenes, such as aniline, as well as with active compounds like lidocaine and melatonin are presented. With these rhenium compounds in hand, the radioactive sandwich complexes [99mTc(η6-pharm)2]+ (pharm=pharmaceutical) can be unambiguously confirmed. The direct labelling of pharmaceuticals with 99mTc through η6-coordination to phenyl rings and the confirmation of the structures with the rhenium homologues opens a path into molecular theranostics.  相似文献   
3.
Theranostics is a precision medicine which integrates diagnostic nuclear medicine and radionuclide therapy for various cancers throughout body using suitable tracers and treatment that target specific biological pathways or receptors. This review covers traditional theranostics for thyroid cancer and pheochromocytoma with radioiodine compounds. In addition, recent theranostics of radioimmunotherapy for non-Hodgkin lymphoma, and treatment of bone metastasis using bone seeking radiopharmaceuticals are described. Furthermore, new radiopharmaceuticals for prostatic cancer and pancreatic cancer have been added. Of particular, F-18 Fluoro-2-Deoxyglucose (FDG) Positron Emission Tomography (PET) is often used for treatment monitoring and estimating patient outcome. A recent clinical study highlighted the ability of alpha-radiotherapy with high linear energy transfer (LET) to overcome treatment resistance to beta--particle therapy. Theranostics will become an ever-increasing part of clinical nuclear medicine.  相似文献   
4.
Photothermal therapy makes use of photothermal sensitizers and laser light to thermally ablate diseased tissues. Porphysome nanoparticles offer a nontoxic alternative to inorganic nanocrystals for the efficient conversion of light into heat. Mn3+ ions were incorporated directly into the building blocks of our porphysome nanoparticles, thus imparting MRI sensitivity while simultaneously improving photostability and maintaining high photothermal efficiency. Mn porphysomes are as photothermally effective as free‐base porphysomes and can rival gadolinium diethylenetriaminepentaacetate (Gd‐DTPA) for MRI contrast generation. Their MRI contrast generation, photothermal efficiency, and photostability are unprecedented for an all‐organic nanoparticle composed of a single functional component.  相似文献   
5.
Two‐dimensional (2D) nanomaterials are currently explored as novel photothermal agents because of their ultrathin structure, high specific surface area, and unique optoelectronic properties. In addition to single photothermal therapy (PTT), 2D nanomaterials have demonstrated significant potential in PTT‐based synergistic therapies. In this Minireview, we summarize the recent progress in 2D nanomaterials for enhanced photothermal cancer therapy over the last five years. Their unique optical properties, typical synthesis methods, and surface modification are also covered. Emphasis is placed on their PTT and PTT‐synergized chemotherapy, photodynamic therapy, and immunotherapy. The major challenges of 2D photothermal agents are addressed and the promising prospects are also presented.  相似文献   
6.
Continuous irradiation during photodynamic therapy (PDT) inevitably induces tumor hypoxia, thereby weakening the PDT effect. In PDT‐induced hypoxia, providing singlet oxygen from stored chemical energy may enhance the cell‐killing effect and boost the therapeutic effect. Herein, we present a phototheranostic (DPPTPE@PEG‐Py NPs) prepared by using a 2‐pyridone‐based diblock polymer (PEG‐Py) to encapsulate a semiconducting, heavy‐atom‐free pyrrolopyrrolidone‐tetraphenylethylene (DPPTPE) with high singlet‐oxygen‐generation ability both in dichloromethane and water. The PEG‐Py can trap the 1O2 generated from DPPTPE under laser irradiation and form a stable intermediate of endoperoxide, which can then release 1O2 in the dark, hypoxic tumor microenvironment. Furthermore, fluorescence‐imaging‐guided phototherapy demonstrates that this phototheranostic could completely inhibit tumor growth with the help of laser irradiation.  相似文献   
7.
2D nanomaterials are widely investigated for biomedical applications, attributed to their large specific surface area, high therapeutic loading capacity, and unique optical, thermal, and/or electronic characteristics. Lattice defects affect the theranostic performance of 2D nanomaterials significantly by altering their electronic properties and chemical binding. Recent investigations have shown that defect-rich 2D nanomaterials are capable of enhancing tumor treatment through efficient drug delivery, photothermal and photodynamic therapies (PTT and PDT), and improving diagnostics via computed tomography (CT), photoacoustic and magnetic resonance imaging. This review summarizes recent progresses, including synthesis, characterization approach, and applications of defect-engineered 2D nanomaterials that are potentially useful in cancer treatment. The expert opinions are also proposed as the conclusion.  相似文献   
8.
Among the well‐known phototriggers, the p‐hydroxyphenacyl (pHP) group has consistently enabled the very fast, efficient, and high‐conversion release of active molecules. Despite this unique behavior, the pHP group has been ignored as a delivery agent, particularly in the area of theranostics, because of two major limitations: Its excitation wavelength is below 400 nm, and it is nonfluorescent. We have overcome these limitations by incorporating a 2‐(2′‐hydroxyphenyl)benzothiazole (HBT) appendage capable of rapid excited‐state intramolecular proton transfer (ESIPT). The ESIPT effect also provided two unique advantages: It assisted the deprotonation of the pHP group for faster release, and it was accompanied by a distinct fluorescence color change upon photorelease. In vitro studies showed that the p‐hydroxyphenacyl–benzothiazole–chlorambucil conjugate presents excellent properties, such as real‐time monitoring, photoregulated drug delivery, and biocompatibility.  相似文献   
9.
沈娟  朱阳  师红东  刘扬中 《化学进展》2018,30(10):1557-1572
以顺铂为代表的小分子铂类抗癌药物是临床应用的一线化疗药物,但其严重的毒副作用和难以克服的耐药性限制了铂类药物的临床应用和研发。运用纳米药物递送技术可以实现药物的靶向递送和可控释放,来提高药物的生物利用度,降低药物的毒副作用以及耐药性,为癌症的治疗带来新的希望。此外,丰富多样的纳米递送体系易于实现药物与具有生物学活性试剂的共运输,从而为各种治疗策略以及诊疗策略的联用提供可能,为最终实现癌症的精准治疗展现广阔前景。本文从靶向递药、药物可控释放、联合治疗、诊疗一体化四个方面对铂类抗癌药物的多功能纳米递送体系在癌症治疗中的最新研究进展进行综述,同时通过列举最新研究成果,展示了新材料、新技术以及新颖设计思想在铂基纳米递送体系中的应用。  相似文献   
10.
The challenges of nanoparticles, such as size‐dependent toxicity, nonbiocompatibility, or inability to undergo functionalization for drug conjugation, limit their biomedical application in more than one domain. Oval‐shaped iron@gold core–shell (oFe@Au) magnetic nanoparticles are engineered and their applications in magnetic resonance imaging (MRI), optical coherence tomography (OCT), and controlled drug release, are explored via photo stimulation‐generated hyperthermia. The oFe@Au nanoparticles have a size of 42.57 ± 5.99 nm and consist of 10.76 and 89.24 atomic % of Fe and Au, respectively. Upon photo‐stimulation for 10 and 15 minutes, the levels of cancer cell death induced by methotrexate‐conjugated oFe@Au nanoparticles are sixfold and fourfold higher, respectively, than oFe@Au nanoparticles alone. MRI and OCT confirm the application of these nanoparticles as a contrast agent. Finally, results of in vivo experiments reveal that the temperature is elevated by 13.2 °C, when oFe@Au nanoparticles are irradiated with a 167 mW cm?2 808 nm laser, which results in a significant reduction in tumor volume and scab formation after 7 days, followed by complete disappearance after 14 days. The ability of these nanoparticles to generate heat upon photo‐stimulation also opens new doors for studying hyperthermia‐mediated controlled drug release for cancer therapy. Applications include biomedical engineering, cancer therapy, and theranostics fields.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号