首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  免费   1篇
化学   3篇
  2021年   1篇
  2014年   1篇
  2012年   1篇
排序方式: 共有3条查询结果,搜索用时 0 毫秒
1
1.
Quantum chemical calculations at the BP86/TZVPP//BP86/SVP level are performed for the tetrylone complexes [W(CO)5‐E(PPh3)2] ( W‐1 E ) and the tetrylene complexes [W(CO)5‐NHE] ( W‐2 E ) with E=C–Pb. The bonding is analyzed using charge and energy decomposition methods. The carbone ligand C(PPh3) is bonded head‐on to the metal in W‐1 C , but the tetrylone ligands E(PPh3)2 are bonded side‐on in the heavier homologues W‐1 Si to W‐1 Pb . The W? E bond dissociation energies (BDEs) increase from the lighter to the heavier homologues ( W‐1 C : De=25.1 kcal mol?1; W‐1 Pb : De=44.6 kcal mol?1). The W(CO)5←C(PPh3)2 donation in W‐1 C comes from the σ lone‐pair orbital of C(PPh3)2, whereas the W(CO)5←E(PPh3)2 donation in the side‐on bonded complexes with E=Si–Pb arises from the π lone‐pair orbital of E(PPh3)2 (the HOMO of the free ligand). The π‐HOMO energy level rises continuously for the heavier homologues, and the hybridization has greater p character, making the heavier tetrylones stronger donors than the lighter systems, because tetrylones have two lone‐pair orbitals available for donation. Energy decomposition analysis (EDA) in conjunction with natural orbital for chemical valence (NOCV) suggests that the W? E BDE trend in W‐1 E comes from the increase in W(CO)5←E(PPh3)2 donation and from stronger electrostatic attraction, and that the E(PPh3)2 ligands are strong σ‐donors and weak π‐donors. The NHE ligands in the W‐2 E complexes are bonded end‐on for E=C, Si, and Ge, but side‐on for E=Sn and Pb. The W? E BDE trend is opposite to that of the W‐1 E complexes. The NHE ligands are strong σ‐donors and weak π‐acceptors. The observed trend arises because the hybridization of the donor orbital at atom E in W‐2 E has much greater s character than that in W‐1 E , and even increases for heavier atoms, because the tetrylenes have only one lone‐pair orbital available for donation. In addition, the W? E bonds of the heavier systems W‐2 E are strongly polarized toward atom E, so the electrostatic attraction with the tungsten atom is weak. The BDEs calculated for the W? E bonds in W‐1 E , W‐2 E and the less bulky tetrylone complexes [W(CO)5‐E(PH3)2] ( W‐3 E ) show that the effect of bulky ligands may obscure the intrinsic W? E bond strength.  相似文献   
2.
Transition metal tetrylene complexes offer great opportunities for molecular cooperation due to the ambiphilic character of the group 14 element. Here we focus on the coordination of germylene [(ArMes2)2Ge :] (ArMes=C6H3-2,6-(C6H2-2,4,6-Me3)2) to [RhCl(COD)]2 (COD=1,5-cyclooctadiene), which yields a neutral germyl complex in which the rhodium center exhibits both η6- and η2-coordination to two mesityl rings in an unusual pincer-type structure. Chloride abstraction from this species triggers a singular dehydrogenative double C−H bond activation across the Ge/Rh motif. We have isolated and fully characterized three rhodium-germyl species associated to three C−H cleavage events along this process. The reaction mechanism has been further investigated by computational means, supporting the key cooperative action of rhodium and germanium centers.  相似文献   
3.
The synthesis and structure of heteroleptic tetrylenes containing bifunctional β‐diketiminate ligand are reported. Compounds were prepared via a protolytic reaction of free β‐diketimine {N‐[(2‐MeO)C6H5]}N═C(Me)CH═C(Me)N(H){N′‐[(2‐MeO)C6H5]} (LCOH) and {N‐[(2‐MeO)C6H5]}N?CHCH?CHN(H){N′‐[(2‐MeO)C6H5]} (LHOH), respectively, with corresponding bis(amide) – M[N(SiMe3)2]2 (M = Ge, Sn, Pb) – in equimolar ratio or via the salt elimination route from lithium precursors generated from LHOH/LCOH species and slight excess of SnCl2 or GeCl2.dioxane complex. Only heteroleptic complexes were obtained by the mentioned methods. Products were characterized by multinuclear NMR spectroscopy techniques and structures of four of them have been determined by X‐ray diffraction methods. Complexes LHOGeCl and LCOSnN(SiMe3)2 crystallize as monomers with the three‐coordinated metal centres by one chloro or amido ligand and one bidentate β‐diketiminato unit, in contrast to the structure of LCOSnCl, which reveals a dimeric character and compound LCOPbN(SiMe3)2, where the central atom of lead is five‐coordinated by methoxy groups of the ligand. Complex LCOSnN(SiMe3)2 was tested as a catalyst for polymerization of various epoxides. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号