首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   37篇
  免费   5篇
  国内免费   1篇
化学   21篇
晶体学   1篇
综合类   1篇
数学   6篇
物理学   14篇
  2022年   1篇
  2021年   1篇
  2020年   2篇
  2018年   3篇
  2017年   3篇
  2015年   1篇
  2014年   1篇
  2013年   7篇
  2012年   2篇
  2010年   2篇
  2009年   2篇
  2007年   1篇
  2004年   2篇
  2003年   1篇
  2002年   2篇
  1999年   1篇
  1998年   1篇
  1996年   2篇
  1994年   2篇
  1991年   1篇
  1990年   1篇
  1982年   1篇
  1979年   3篇
排序方式: 共有43条查询结果,搜索用时 15 毫秒
1.
The X‐ray powder diffraction pattern that corresponds to the disordered state of kalsilite (potassium aluminium orthosilicate), KAlSiO4, is investigated. The directionality of (Al,Si)O4 tetrahedra within single six‐membered tetrahedral ring building units (S6R) could not be defined. With equal probability for the directionality of each tetrahedra within one S6R [free apex pointing up (U) or down (D)], an undefined sequence of U and D directionalities is needed to describe the S6R building units. The extinction conditions of disordered kalsilite are also different compared to ordered kalsilite within the space group P63. In disordered kalsilite, h0l and hhl reflections with l = 2n + 1 are systematically absent.  相似文献   
2.
Ruizhi Li 《哲学杂志》2015,95(25):2747-2763
Stacking fault tetrahedra (SFTs) are volume defects that typically form by the clustering of vacancies in face-centred cubic (FCC) metals. Here, we report a dislocation-based mechanism of SFT formation initiated from the semi-coherent interfaces of Cu–Al nanoscale multilayered metals subjected to out-of-plane tension. Our molecular dynamics simulations show that Shockley partials are first emitted into the Cu interlayers from the dissociated misfit dislocations along the Cu–Al interface and interact to form SFTs above the triangular intrinsic stacking faults along the interface. Under further deformation, Shockley partials are also emitted into the Al interlayers and interact to form SFTs above the triangular FCC planes along the interface. The resulting dislocation structure comprises closed SFTs within the Cu interlayers which are tied across the Cu–Al interfaces to open-ended SFTs within the Al interlayers. This unique plastic deformation mechanism results in considerable strain hardening of the Cu–Al nanolayered metal, which achieves its highest tensile strength at a critical interlayer thickness of ~4 nm corresponding to the highest possible density of complete SFTs within the nanolayer structure.  相似文献   
3.
In this study, a series of tetrafluoroborates with non-π-conjugated [BF4] tetrahedra are investigated systematically by first-principles calculations. Theoretical studies demonstrate that tetrafluoroborates with alkali and/or alkaline-earth metals are more favorable for deep-ultraviolet transmission and are comparable to the classical deep-ultraviolet (deep-UV) material, MgF2. Furthermore, bandgap decrease with the increasing of ionic radii in alkali and/or alkaline-earth metals. Introducing highly polarizable cations with d10-configuration or cations with lone pair electrons into the structure will decrease the bandgaps. The birefringence and second harmonic generation effects are not large enough in tetrafluoroborates because polarizability anisotropy and hyperpolarizability in non-π-conjugated [BF4] tetrahedra are much smaller than those in π-conjugated groups. However, the second harmonic generation effect for [BF4] tetrahedra has a higher contribution in comparison with that due to birefringence. To effectively synthesize the borate fluorides or fluorooxoborates in the deep-UV region, raw materials with B−F bonds are preferred.  相似文献   
4.
5.
G Ananthakrishna 《Pramana》1979,12(5):543-561
The model introduced for clustering of quenched-in vacancies in the first part of this series of papers is considered. Using a generating function, the rate equations are converted into a first order partial differential equation for the generating function coupled to a differential equation for the rate of change of the concentration of single vacancy units. A decoupling scheme is effected which gives an exponentially decaying solution with a very short time constant for the concentration of single vacancy units. The differential equation for the generating function is solved for times larger than the time required for the concentration of single vacancy units to reach its asymptotic value. The distribution for the size of the clusters is obtained by inverting the solution thus obtained. Several results that follow are shown to be in reasonably good agreement with the experimental results.  相似文献   
6.
We present a comprehensive dislocation dynamics (DD) study of the strength of stacking fault tetrahedra (SFT) to screw dislocation glide in fcc Cu. Our methodology explicitly accounts for partial dislocation reactions in fcc crystals, which allows us to provide more detailed insights into the dislocation–SFT processes than previous DD studies. The resistance due to stacking fault surfaces to dislocation cutting has been computed using atomistic simulations and added in the form of a point stress to our DD methodology. We obtain a value of 1658.9 MPa, which translates into an extra force resolved on the glide plane that dislocations must overcome before they can penetrate SFTs. In fact, we see they do not, leading to two well differentiated regimes: (i) partial dislocation reactions, resulting in partial SFT damage, and (ii) impenetrable SFT resulting in the creation of Orowan loops. We obtain SFT strength maps as a function of dislocation glide plane-SFT intersection height, interaction orientation, and dislocation line length. In general SFTs are weaker obstacles the smaller the encountered triangular area is, which has allowed us to derive simple scaling laws with the slipped area as the only variable. These laws suffice to explain all strength curves and are used to derive a simple model of dislocation–SFT strength. The stresses required to break through obstacles in the 2.5–4.8-nm size range have been computed to be 100–300 MPa, in good agreement with some experimental estimations and molecular dynamics calculations.  相似文献   
7.
利用强流脉冲电子束(HCPEB)技术对多晶纯铝样品进行辐照,采用透射电子显微镜详细分析了辐照诱发的空位簇缺陷.HCPEP辐照后,在辐照表层内形成了大量的四方形空位胞,其间包含位错圈和堆垛层错四面体(SFT)等类型的空位簇缺陷.1次辐照后,空位胞内产生空位型位错圈,5次辐照则主要产生SFT;10次辐照后,空位胞内产生的空位簇缺陷主要是位错圈,局部区域也观察到了SFT缺陷,在产生SFT的附近区域具有很低的位错密度或者几乎无位错出现.HCPEB辐照产生的瞬间加热和冷却诱发了幅值极大且应变速率极高的应力,这一因素 关键词: 强流脉冲电子束 多晶纯铝 空位簇缺陷 堆垛层错四面体  相似文献   
8.
李雪  王亮  熊建桥  邵秋萍  蒋荣  陈淑芬 《物理学报》2018,67(24):247201-247201
为增强有机太阳能电池的光利用率,提高能量转换效率,本文合成了金四面体形状的纳米粒子,并用聚苯乙烯磺酸钠(PSS)包裹形成了核壳结构的金纳米四面体(Au@PSS tetrahedra NPs).将其掺杂到有机太阳能电池空穴提取层与活性层的界面处,利用表面等离子体共振效应来增强活性层对光的吸收,从而提高有机太阳能电池的能量转换效率.研究了掺杂浓度和PSS包裹厚度对电池性能的影响.结果表明:掺杂浓度为6%时,器件性能最佳,能量转换效率达到3.08%; PSS壳层厚度优化为2.5 nm时,转换效率达到3.65%,较标准电池提升了22.9%.电池性能的改善主要源于金四面体纳米粒子的共振吸收峰位于给体材料吸收谱范围内,纳米粒子的共振促进了给体的吸收,同时PSS壳层的引入促进了激子的解离和电荷的转移,上述因素的改善提升了电池的短路电流、填充因子和转换效率.  相似文献   
9.
A family of quadrature rules for integration over tetrahedral volumes is developed. The underlying structure of the rules is based on the cubic close-packed (CCP) lattice arrangement using 1, 4, 10, 20, 35, and 56 quadrature points. The rules are characterized by rapid convergence, positive weights, and symmetry. Each rule is an optimal approximation in the sense that lower-order terms have zero contribution to the truncation error and the leading-order error term is minimized. Quadrature formulas up to order 9 are presented with relevant numerical examples.  相似文献   
10.
The title compound belongs to monoclinic,space group C2/c with a=5.2694(1),b=12.6659(4),c=19.4108(2) ,β=91.504(2)°,V=1295.06(5) 3,Z=4 and Dc=5.599 g/cm3. The structure of BaGd2(MoO4)4 contains a MoO4 tetrahedron,a distorted GdO8 polyhedron,and Ba2+ ions in a tenfold coordination. The GdO8 polyhedra are linked together through edge-sharing to give a two-dimensional Gd layer. The MoO4 tetrahedra connected to the Gd atoms are capped up and down the Gd layer through common oxygen apices,thus forming a new Gd-Mo layer. Finally,the Gd-Mo layers are held together through bridging BaO10 polyhedra to form a three-dimensional framework. Since the Ba-μ3-O bond has a large average distance of 2.888 ,this structural characteristic will result in a cleavage along the (001) plane.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号