首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   585篇
  免费   207篇
  国内免费   159篇
化学   241篇
晶体学   26篇
力学   15篇
综合类   1篇
数学   4篇
物理学   664篇
  2024年   3篇
  2023年   6篇
  2022年   10篇
  2021年   17篇
  2020年   27篇
  2019年   16篇
  2018年   27篇
  2017年   21篇
  2016年   37篇
  2015年   24篇
  2014年   37篇
  2013年   84篇
  2012年   40篇
  2011年   58篇
  2010年   40篇
  2009年   52篇
  2008年   52篇
  2007年   36篇
  2006年   51篇
  2005年   39篇
  2004年   40篇
  2003年   30篇
  2002年   44篇
  2001年   23篇
  2000年   34篇
  1999年   21篇
  1998年   19篇
  1997年   11篇
  1996年   12篇
  1995年   14篇
  1994年   5篇
  1993年   4篇
  1992年   5篇
  1991年   3篇
  1990年   2篇
  1988年   1篇
  1987年   2篇
  1986年   1篇
  1985年   2篇
  1983年   1篇
排序方式: 共有951条查询结果,搜索用时 15 毫秒
1.
The molecular orientation and strain‐induced crystallization of synthetic rubbers—polyisoprene rubber, polybutadiene rubber, and butyl rubber [poly(isobutylene isoprene)]—during uniaxial deformation were studied with in situ synchrotron wide‐angle X‐ray diffraction. The high intensity of the synchrotron X‐rays and the new data analysis method made it possible to estimate the mass fractions of the strain‐induced crystals and amorphous chain segments in both the oriented and unoriented states. Contrary to the conventional concept, the majority of the molecules (50–75%) remained in an unoriented amorphous state at high strains. Each synthetic rubber showed a different behavior of strain‐induced crystallization and molecular orientation during extension and retraction. Our results confirmed the occurence of strain‐induced networks in the synthetic rubbers due to the inhomogeneity of the crosslink distribution. The strain‐induced networks containing microfibrillar crystals and oriented amorphous tie chains were responsible for the ultimate mechanical properties. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 956–964, 2004  相似文献   
2.
Unique crystallization and melting behavior in poly(aryl ether ketone ketone) containing alternated terephthalic and isophthalic moieties were studied by time-resolved synchrotron x-ray methods. Recently, this material has been shown to exhibit three polymorphs (forms I, II, and III). In this work, we further investigated their distinctive thermal properties and found that form I is the dominating and the most thermally stable phase while form II is favored by fast nucleation conditions and is the least stable phase. On the other hand, form III represents a minor intermediate phase that usually coexists with form I and can be transferred from form II and to form I. Structural and morphological changes in form I have been followed by simultaneous wide-angle x-ray diffraction (WAXD)/small-angle x-ray scattering (SAXS) measurements during cold- or melt-crystallization and subsequent melting. In all cases, a larger dimensional change was found in the crystallographic a-axis than the b-axis during heating and cooling. This may be due to the greater lateral stress variation with respect to temperature along the a direction of the primary lamellae which is induced by either the formation of secondary lamellae or the preferential chain-folding direction in poly(aryl ether ketone ketone)s. During the phase transitions of form II ← III in the cold-crystallized specimen and form III ← I in the melt-crystallized samples, lamellar variables (long period, lamellar thickness, and invariant) obtained from SAXS remain almost constant. This indicates that the density distribution in the long spacing is independent of the melting in form II or III. For melt-crystallization, the corresponding changes in unit-cell dimensions and lamellar morphology during the annealing-induced low endotherm are most consistent with the argument that these changes are due to the melting of thin lamellar population. © 1995 John Wiley & Sons, Inc.  相似文献   
3.
Alp  E. E.  Sturhahn  W.  Toellner  T. S.  Zhao  J.  Hu  M.  Brown  D. E. 《Hyperfine Interactions》2002,144(1-4):3-20
Nuclear resonant inelastic X-ray scattering of synchrotron radiation is being applied to ever widening areas ranging from geophysics to biophysics and materials science. Since its first demonstration in 1995 using the 57Fe resonance, the technique has now been applied to materials containing 83Kr, 151Eu, 119Sn, and 161Dy isotopes. The energy resolution has been reduced to under a millielectronvolt. This, in turn, has enabled new types of measurements like Debye velocity of sound, as well as the study of origins of non-Debye behavior in presence of other low-energy excitations. The effect of atomic disorder on phonon density of states has been studied in detail. The flux increase due to the improved X-ray sources, crystal monochromators, and time-resolved detectors has been exploited for reducing sample sizes to nano-gram levels, or using samples with dilute resonant nuclei like myoglobin, or even monolayers. Incorporation of micro-focusing optics to the existing experimental setup enables experiments under high pressure using diamond-anvil cells. In this article, we will review these developments. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   
4.
We present research investigations in the field of multilayer optics in X-ray and extreme ultra-violet ranges (XUV), aimed at the development of optical elements for applications in experiments in physics and in scientific instrumentation. We discuss normal incidence multilayer optics in the spectral region of “water window”, multilayer optics for collimation and focusing of hard X-ray, multilayer dispersing elements for X-ray spectroscopy of high-temperature plasma, multilayer dispersing elements for analysis of low Z-elements. Our research pays special attention to optimization of multilayer optics for projection EUV-lithography (ψ-13nm) and short period multilayer optics.  相似文献   
5.
The change of the superstructure of different polyethylenes during uniaxial deformation is investigated. The method used is small-angle scattering with synchrotron radiation. For branched polyethylene (Lupolen 1840D) the whole deformation range is analyzed. Beginning with superstructure of the lamellar cluster type, the superstructure partly disappears on a time scale of a few minutes and the fibrillar structure is built up. The degree of destruction and rebuilding depends on the drawing temperature. For very high molecular weight polyethylene (GUR) a reversible change of the superstructure at higher deformation ratios and at different temperatures is observed. The superstructure of (ethylene—hexene) copolymers (TIPELIN) at high draw ratios depends on the drawing temperature and is almost independent of the side group content. Interfibrillar microcracks parallel to the draw direction are produced in samples with a low side group content for draw ratios λ ≥ 1.5.  相似文献   
6.
A relatively high level of the minimal electron energy at the gyrotron output even at very large spread in pitch factor is explained. An estimation of the recuperation efficiency, which can be obtained due to this effect, is given.  相似文献   
7.
Stanley L. Ruby (1924–2004) made major contributions to Mössbauer spectroscopy and was the first to suggest the feasibility of observing the Mössbauer effect using synchrotron radiation. In this article we recall his scientific legacy that have inspired his scientific colleagues.  相似文献   
8.
The crystalline structure of polyamide‐12 (PA12) was studied by solid‐state 13C nuclear magnetic resonance (NMR) as well as by synchrotron wide‐ and small‐angle X‐ray scattering (WAXS and SAXS). Isotropic and oriented PA12 showed different NMR spectra ascribed to γ‐ and γ′‐crystalline modifications, respectively. On the basis of the position of the first diffraction peak, the isotropic γ‐form and the oriented γ′‐form were shown to be with hexagonal crystalline lattice at room temperature. When heated, the two PA12 polymorphs demonstrated different behaviors. Above 140 °C, the isotropic γ‐PA12 partially transformed into α‐modification. No such transition was observed with the oriented γ′‐PA12 phase even after annealing at temperatures close to melting. A γ′–γ transition was observed here only after isotropization by melting point. Various structural parameters were extracted from the WAXS and SAXS patterns and analyzed as a function of temperature and orientation: the degree of crystallinity, the d‐spacings, the Bragg's long spacings, the average thicknesses of the crystalline (lc) and amorphous (la) phases, and the linear crystallinity xcl within the lamellar stacks. © 2005 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 43: 3720–3733, 2005  相似文献   
9.
Four vanadium oxide layers on mineral TiO2(001)‐anatase supports with different thickness (3–33 Å) were prepared with reactive d.c. magnetron sputtering and were extensively studied with photoelectron spectroscopy. Al Kα radiation and 150 eV synchrotron radiation were used as excitation sources. The evolution of the 2p, 3s and 3p core level line shapes of V and Ti as a function of the vanadium oxide thickness was studied, as well as the O1s and O2s core lines and the valence band. All the V2p spectra of the deposited vanadium oxide layers consist of at least 60% V5+, the rest being V4+. The V3p region is complicated by multiplet splitting, which prevents the determination of the vanadium oxidation state. The V3p multiplet splitting is different for the two excitation energies. No reduction of the titania support surface due to the vanadium oxide deposition was observed. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   
10.
The perovskite-structured compound methylammonium lead chloride orders into a low-temperature phase of space group Pnma, in which at 80 K each of the orthorhombic axes , and is doubled with respect to the room temperature disordered cubic phase (). The structure was solved by ab initio methods using the programs EXPO and FOX. This unusual cell basis for space group Pnma is not that of a standard tilt system. This phase, in which the methylammonium ions, are ordered shows distorted octahedra. The octahedra possess a bond angle variance of 60.663°2 and a quadratic elongation of 1.018, and are more distorted than those in the ordered phase of methylammonium lead bromide. There is also an alternating long and short Pb-Cl bond along a, due to an off-center displacement of Pb within the octahedron. This suggests that the most rigid unit is actually the methylammonium cation, rather than the PbCl6 octahedra, in agreement with existing spectroscopic data.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号