首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   26494篇
  免费   3400篇
  国内免费   3909篇
化学   23277篇
晶体学   269篇
力学   1809篇
综合类   176篇
数学   1423篇
物理学   6849篇
  2024年   45篇
  2023年   228篇
  2022年   562篇
  2021年   569篇
  2020年   908篇
  2019年   781篇
  2018年   720篇
  2017年   987篇
  2016年   1238篇
  2015年   1068篇
  2014年   1385篇
  2013年   2372篇
  2012年   1688篇
  2011年   1692篇
  2010年   1513篇
  2009年   1622篇
  2008年   1786篇
  2007年   1887篇
  2006年   1662篇
  2005年   1474篇
  2004年   1404篇
  2003年   1162篇
  2002年   964篇
  2001年   843篇
  2000年   807篇
  1999年   653篇
  1998年   611篇
  1997年   509篇
  1996年   464篇
  1995年   393篇
  1994年   408篇
  1993年   341篇
  1992年   280篇
  1991年   157篇
  1990年   122篇
  1989年   106篇
  1988年   90篇
  1987年   58篇
  1986年   50篇
  1985年   41篇
  1984年   35篇
  1983年   14篇
  1982年   29篇
  1981年   12篇
  1980年   16篇
  1979年   13篇
  1978年   8篇
  1973年   6篇
  1971年   3篇
  1957年   4篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
1.
2.
Silver nanoparticles (NPs) ranging in size from 40 to 100 nm were prepared in high yield by using an improved seed‐mediated method. The homogeneous Ag NPs were used as building blocks for 2D assembled Ag NP arrays by using an oil/water interface. A close‐packed 2D array of Ag NPs was fabricated by using packing molecules (3‐mercaptopropyltrimethoxysilane) to control the interparticle spacing. The homogeneous 2D Ag NP array exhibited a strong quadrupolar cooperative plasmon mode resonance and a dipolar red‐shift relative to individual Ag NPs suspended in solution. A well‐arranged 2D Ag NP array was embedded in polydimethylsiloxane film and, with biaxial stretching to control the interparticle distance, concomitant variations of the quadrupolar and dipolar couplings were observed. As the interparticle distance increased, the intensity of the quadrupolar cooperative plasmon mode resonance decreased and dipolar coupling completely disappeared. The local electric field of the 2D Ag NP array was calculated by using finite difference time domain simulation and qualitatively showed agreement with the experimental measurements.  相似文献   
3.
The dinuclear zinc complex reported by us is to date the most active zinc catalyst for the co‐polymerization of cyclohexene oxide (CHO) and carbon dioxide. However, co‐polymerization experiments with propylene oxide (PO) and CO2 revealed surprisingly low conversions. Within this work, we focused on clarification of this behavior through experimental results and quantum chemical studies. The combination of both results indicated the formation of an energetically highly stable intermediate in the presence of propylene oxide and carbon dioxide. A similar species in the case of cyclohexene oxide/CO2 co‐polymerization was not stable enough to deactivate the catalyst due to steric repulsion.  相似文献   
4.
High-energy assisted extraction techniques, like ultrasound assisted extraction (UAE) and microwave assisted extraction (MAE), are widely applied over the last years for the recovery of bioactive compounds such as carotenoids, antioxidants and phenols from foods, animals and herbal natural sources. Especially for the case of xanthophylls, the main carotenoid group of crustaceans, they can be extracted in a rapid and quantitative way with the use of UAE and MAE.  相似文献   
5.
The impact of reversible bond formation between a growing radical chain and a metal complex (organometallic‐mediated radical polymerization (OMRP) equilibrium) to generate an organometallic intermediate/dormant species is analyzed with emphasis on the interplay between this and other one‐electron processes involving the metal complex, which include halogen transfer in atom transfer radical polymerization (ATRP), hydrogen‐atom transfer in catalytic chain transfer (CCT), and catalytic radical termination (CRT). The challenges facing the controlled polymerization of “less active monomers” (LAMs) are outlined and, after reviewing the recent achievements of OMRP in this area, the perspectives of this technique are analyzed.  相似文献   
6.
Naphthalimide‐phthalimide derivatives (NDPDs) have been synthesized and combined with an iodonium salt, N‐vinylcarbazole, amine or 2,4,6‐tris(trichloromethyl)‐1,3,5‐triazine to produce reactive species (i.e., radicals and cations). These generated reactive species are capable of initiating the cationic polymerization of epoxides and/or the radical polymerization of acrylates upon exposure to very soft polychromatic visible lights or blue lights. Compared with the well‐known camphorquinone based systems used as references, the novel NDPD based combinations employed here demonstrate clearly higher efficiencies for the cationic polymerization of epoxides under air as well as the radical polymerization of acrylates. Remarkably, one of the NDPDs (i.e., NDPD2) based systems is characterized by an outstanding reactivity. The structure/reactivity/efficiency relationships of the investigated NDPDs were studied by fluorescence, cyclic voltammetry, laser flash photolysis, electron spin resonance spin trapping, and steady state photolysis techniques. The key parameters for their reactivity are provided. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2015 , 53, 665–674  相似文献   
7.
The hydrophobicity of silicone elastomers can compromise their utility in some biomaterials applications. Few effective processes exist to introduce hydrophilic groups onto a polysiloxane backbone and subsequently crosslink the material into elastomers. This problem can be overcome through the utilization of metal‐free click reactions between azidoalkylsilicones and alkynyl‐modified silicones and/or PEGs to both functionalize and crosslink silicone elastomers. Alkynyl‐functional PEG was clicked onto a fraction of the available azido groups of a functional polysiloxane, yielding azido reactive PDMS‐g‐PEG rake surfactants. The reactive polymers were then used to crosslink alkynyl‐terminated PDMS of different molecular weights. Using simple starting materials, this generic yet versatile method permits the preparation and characterization of a library of amphiphilic thermoset elastomers that vary in their composition, crosslink density, elasticity, hydrogel formation, and wettability. An appropriate balance of PEG length and crosslink density leads to a permanently highly wettable silicone elastomer that demonstrated very low levels of protein adsorption. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2015 , 53, 1082–1093  相似文献   
8.
Hybrid materials in which reduced graphene oxide (rGO) is decorated with Au nanoparticles (rGO–Au NPs) were obtained by the in situ reduction of GO and AuCl4?(aq) by ascorbic acid. On laser excitation, rGO could be oxidized as a result of the surface plasmon resonance (SPR) excitation in the Au NPs, which generates activated O2 through the transfer of SPR‐excited hot electrons to O2 molecules adsorbed from air. The SPR‐mediated catalytic oxidation of p‐aminothiophenol (PATP) to p,p′‐dimercaptoazobenzene (DMAB) was then employed as a model reaction to probe the effect of rGO as a support for Au NPs on their SPR‐mediated catalytic activities. The increased conversion of PATP to DMAB relative to individual Au NPs indicated that charge‐transfer processes from rGO to Au took place and contributed to improved SPR‐mediated activity. Since the transfer of electrons from Au to adsorbed O2 molecules is the crucial step for PATP oxidation, in addition to the SPR‐excited hot electrons of Au NPs, the transfer of electrons from rGO to Au contributed to increasing the electron density of Au above the Fermi level and thus the Au‐to‐O2 charge‐transfer process.  相似文献   
9.
Metal‐based catalysts and initiators have played a pivotal role in the ring‐opening polymerization (ROP) of cyclic esters, thanks to their high activity and remarkable ability to control precisely the architectures of the resulting polyesters in terms of molar mass, dispersity, microstructure, or tacticity. Today, after two decades of extensive research, the field is slowly reaching maturity. However, several challenges remain, while original concepts have emerged around new types or new applications of catalysis. This Review is not intended to comprehensively cover all of these aspects. Rather, it provides a personal overview of the very recent progress achieved in some selected, important aspects of ROP catalysis—stereocontrol and switchable catalysis. Hence, the first part addresses the development of new metal‐based catalysts for the isoselective ROP of racemic lactide towards stereoblock copolymers, and the use of syndioselective ROP metal catalysts to control the monomer sequence in copolymers. A second part covers the development of ROP catalysts—primarily metal‐based catalysts, but also organocatalysts—that can be externally regulated by the use of chemical or photo stimuli to switch them between two states with different catalytic abilities. Current challenges and opportunities are highlighted.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号