首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   174篇
  免费   7篇
  国内免费   41篇
化学   213篇
综合类   1篇
物理学   8篇
  2024年   1篇
  2023年   2篇
  2022年   3篇
  2021年   8篇
  2020年   10篇
  2019年   4篇
  2018年   5篇
  2017年   8篇
  2016年   8篇
  2015年   5篇
  2014年   3篇
  2013年   14篇
  2012年   5篇
  2011年   11篇
  2010年   11篇
  2009年   15篇
  2008年   10篇
  2007年   12篇
  2006年   11篇
  2005年   10篇
  2004年   10篇
  2003年   7篇
  2002年   11篇
  2001年   6篇
  2000年   1篇
  1999年   2篇
  1998年   5篇
  1996年   3篇
  1995年   5篇
  1994年   5篇
  1993年   2篇
  1992年   4篇
  1991年   2篇
  1990年   1篇
  1989年   1篇
  1982年   1篇
排序方式: 共有222条查询结果,搜索用时 15 毫秒
1.
There is considerable interest in protein adsorption onto microspheres because of its importance in a wide range of biomedical applications, such as artificial tissues and organs, drug delivery systems, biosensors, solid-phase immunoassays, immunomagnetic cell separation and immobilized enzymes or catalyst. It has been well known that the interaction between proteins and microspheres plays important roles in this process. Major interaction involved in the adsorption can be classified as electrostatic, hydrophobic and hydrogen-bonding. Indeed, adsorption of proteins onto microspheres is a complex process and often can involve many dynamic steps, from the initial attachment of the protein on the surface of microspheres to the equilibrium. Also the conformation of proteins probably occurs to a certain degree of deformation or structural change due to the large area of contact. Recently, much interest has been shown in sulfonated microspheres, since sulfonate-group itself is one of components in bio-bodies, as well as is sensitive to the change of pH or ionic strength. Indeed, so far, scanty investigations have been performed in the full range. Also few researches have involved the data on adsorption rate and the maximum amount of protein adsorbed, or the reversibility of the process and conformational change of protein adsorbed as well.In present study, BSA (bovine serum albumin) was chosen as the model protein and sulfonated PMMA [poly(methyl methacrylate)] microspheres as the matrix to investigate the adsorption process.The purpose is to show some information especially the intrinsic information involved by the adsorption process Adsorption of BSA onto sulfonated microspheres (MS) has been investigated as a function of time, protein concentration and pH. The adsorption appears to be a reversible process and the presence of sulfonate groups can play important roles in the adsorption process, so as to increase the amount of protein adsorbed and influences the interaction of BSA molecules. Fig. 1 also shows that the reciprocation between unadsorbed and adsorbed BSA or rearrangement of adsorbed BSA molecules does not produce visible change in the properties of the adsorbed protein. Close to the isoelectric point of BSA (pI 4.7), the amount of protein adsorbed exhibits a maximum. A higher or lower pH results in the significant decrease of the adsorption amount. This is related to the dependence of BSA conformations at different pH conditions.  相似文献   
2.
3.
Sulfonic cation exchangers with two ion exchange group concentrations (0.5 and 2.4 mmol/g, samples A and B, respectively) were obtained by sulfonation of a porous styrene (S) and divinylbenzene (DVB) copolymer with chlorosulfonic acid. Strong thermal decomposition of the sulfonated copolymer A, accompanied by significant changes in its porous structure, starts at ca. 400°C. The char has no sulfonic groups. After heat treatment at 400°C in steam, a sorbent was obtained (yield 65%) that shows higher phenol sorption than the untreated sample when related to the bed volume. The chlorosulfonic derivatives of the initial copolymer were less thermally resistant than the sulfonic ones obtained by hydrolysis. Pyrolysis of the cation exchanger B, in its H+ and Ca2+ forms, was carried out at 900°C (yield of both chars close to 30%). By subsequent steam activation at 800°C to a 50% burn-off of the char, sorbents with well-developed, but distinctly different, porous structures were obtained. The activated char from the sulfonated copolymer in its hydrogen form was highly microporous and indicated an effective surface area of 1180 m2/g. However, because of a low contribution of mesopores, its ability to adsorb phenol from the liquid phase was not very high. The activated char from the calcium-doped copolymer, indicating a smaller surface area (580 m2/g) but characterized by a well-developed mesoporosity, was a better sorbent for phenol. © 1994 John Wiley & Sons, Inc.  相似文献   
4.
A series of branched/crosslinked sulfonated polyimide (B/C‐SPI) membranes were prepared and evaluated as proton‐conducting ionomers based on the new concept of in situ crosslinking from sulfonated polyimide (SPI) oligomers and triamine monomers. Chemical branching and crosslinking in SPI oligomers with 1,3,5‐tris(4‐aminophenoxy)benzene as a crosslinker gave the polymer membranes very good water stability and mechanical properties under an accelerated aging treatment in water at 130 °C, despite their high ion‐exchange capacity (2.2–2.6 mequiv g?1). The resulting polymer electrolytes displayed high proton conductivities of 0.2–0.3 S cm?1 at 120 °C in water and reasonably high conductivities of 0.02–0.03 S cm?1 at 50% relative humidity. In a single H2/O2 fuel‐cell system at 90 °C, they exhibited high fuel‐cell performances comparable to those of Nafion 112. The B/C‐SPI membranes also displayed good performances in a direct methanol fuel cell with methanol concentrations as high as 50 wt % that were superior to those of Nafion 112. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 3751–3762, 2006  相似文献   
5.
The sulfonated poly(ether ether ketone sulfone) (SPEEKS)/heteropolyacid (HPA) composite membranes with different HPA content in SPEEKS copolymers matrix with different degree of sulfonation (DS) were investigated for high temperature proton exchange membrane fuel cells. Composite membranes were characterized by Fourier transfer infrared spectroscopy (FTIR) and scanning electron microscopy (SEM). FTIR band shifts suggested that the sulfonic acid groups on the copolymer backbone strongly interact with HPA particles. SEM pictures showed that the HPA particles were uniformly distributed throughout the SPEEKS membranes matrix and particle sizes decreased with the increment of copolymers' DS. The holes were not found in SPEEKS‐4/HPA30 (consisting of 70% SPEEKS copolymers with DS = 0.8 and 30% HPA) composite membrane after composite membranes were treated with boiling water for 24 h. Thermal stabilities of the composite membranes were better than those of pure sulfonated copolymers membranes. Although the composite membranes possessed lower water uptake, it exhibited higher proton conductivity for SPEEKS‐4/HPA30 especially at high temperature (above 100 °C). Its proton conductivity linearly increased from 0.068 S/cm at 25 °C to 0.095 S/cm at 120 °C, which was higher than 0.06 S/cm of Nafion 117. In contrast, proton conductivity of pure SPEEKS‐4 membrane only increased from 0.062 S/cm at 25 °C to 0.078 S/cm at 80 °C. At 120 °C, proton conductivity decreased to poor 0.073 S/cm. The result indicated that composite membranes exhibited high proton conductivity at high temperature. © 2006 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 44: 1967–1978, 2006  相似文献   
6.
Transport phenomenon of three sulfonated azo dyes, C.I. Acid Red 88, C.I. Direct Yellow 12, and C.I. Direct Blue 15 into water-swollen cellulose membranes has been analyzed on the basis of parallel transport theory by surface and pore diffusion. Langmuir equation was applied into the mass balance equation to estimate dye concentration in the pores. The results were compared with the results obtained by applying Freundlich equation in our previous papers. The surface diffusivity (D s) and the pore diffusivity (D p) for the parallel diffusion model obtained by applying Langmuir equation agreed with those obtained by applying Freudlich equation. The theoretical concentration profiles for parallel diffusion calculated usingD s andD p coincided accurately with the experimental data when we applied either Langmuir or Freundlich equations.  相似文献   
7.
黄玉惠  刘彦 《应用化学》1991,8(5):37-41
研究了磺化度为20.9mol%的磺化聚苯醚(S-PPO)的钠盐和锂盐在四氢呋喃/甲醇混合溶剂中的离聚体行为。S-PPO离聚体在溶液中的链聚集状态与聚合物浓度、阳离子半径密切相关。当Na-SPPO的浓度高于3g/dL时,在30~40℃范围内其聚集度DA与浓度C的关系为:DA=ke~(εc)常数K和β分别表示为与发现链聚集的起始浓度和链聚集速率相关的常数。  相似文献   
8.
The photophysical properties of a series of sulfonated micromolecule(paratoluenesulfonic acid,HPTS) and macromolecules (linear and crosslinked poiys.tvrene) have been studied by steady-state fluorescence spectra. The results indicate that the ground sulfonated ring associations can form in both the micromolecules and the macromolecules. The fluorescence spectra of the sulfonated crosslinked copolymers appear a red-shift when the copolymers change from hydrogen-type to sodium-t~pe, and some new emission bands appear in the long-wavelength region.These results are explained in terms of synergetic effect of hydrogen bond, π-π interaction and crosslinking effect.  相似文献   
9.
Sulfonated carbon as a strong and stable solid acid catalyst exhibited excellent catalytic performance in various acid-catalyzed reactions. Here, sulfonated carbon, as catalyst for oxidation reaction, was prepared via the carbonization of starch followed by sulfonation with concentrated sulfuric acid. N2 physisorption, X-ray diffraction, Fourier transform infrared spectroscopy, X-ray fluorescence and acid-base titration were used to characterize the obtained materials. The catalytic activity of sulfonated carbon was studied in the oxidation of aldehydes to carboxylic acids using 30 wt% H2O2 as oxidant. This oxidation protocol works well for various aldehydes including aromatic and aliphatic aldehydes. The sulfonated carbon can be recycled for three times without obvious loss of activity.  相似文献   
10.
Among the methods available to reduce water production during oil recovery, injecting a gelling system composed of a polymer and a crosslinker has been widely used. In this study, a Plackett-Burman design was used for screening a large number of factors such as concentrations of polymer, crosslinker, pH, temperature, and presence or absence of NaCl, CaCl2, MgCl2, KCl, thiourea, sodium lactate, and nanoclay on the gelation time of sulfonated polyacrylamide nanocomposite hydrogels by rheological tests. Among these factors, temperature, pH, and CaCl2 concentration were found to have the greatest effect on the gelation time. The effects of these three factors and their interactions on the gelation time were then determined by using central composite design of response surface method. As a result, the interactions of CaCl2 concentration with temperature and pH were considerably more than the interactions of pH and temperature on the gelation time. At low pH (3 < pH < 7), the gelation time decreased by decrease of pH while at CaCl2 concentration of 3750–11250 ppm and at 7 < pH < 11, the gelation time increased with the increase of pH. It was found that temperature was the most effective parameter to control the gelation time.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号