首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   878篇
  免费   73篇
  国内免费   215篇
化学   1010篇
晶体学   11篇
力学   5篇
综合类   5篇
数学   1篇
物理学   134篇
  2024年   1篇
  2023年   9篇
  2022年   17篇
  2021年   26篇
  2020年   42篇
  2019年   35篇
  2018年   31篇
  2017年   45篇
  2016年   58篇
  2015年   46篇
  2014年   52篇
  2013年   99篇
  2012年   67篇
  2011年   78篇
  2010年   74篇
  2009年   75篇
  2008年   57篇
  2007年   65篇
  2006年   41篇
  2005年   54篇
  2004年   43篇
  2003年   25篇
  2002年   24篇
  2001年   12篇
  2000年   13篇
  1999年   9篇
  1998年   9篇
  1997年   6篇
  1996年   11篇
  1995年   9篇
  1994年   8篇
  1993年   5篇
  1992年   9篇
  1991年   2篇
  1990年   1篇
  1989年   3篇
  1987年   1篇
  1986年   1篇
  1985年   1篇
  1982年   2篇
排序方式: 共有1166条查询结果,搜索用时 15 毫秒
1.
There is considerable interest in protein adsorption onto microspheres because of its importance in a wide range of biomedical applications, such as artificial tissues and organs, drug delivery systems, biosensors, solid-phase immunoassays, immunomagnetic cell separation and immobilized enzymes or catalyst. It has been well known that the interaction between proteins and microspheres plays important roles in this process. Major interaction involved in the adsorption can be classified as electrostatic, hydrophobic and hydrogen-bonding. Indeed, adsorption of proteins onto microspheres is a complex process and often can involve many dynamic steps, from the initial attachment of the protein on the surface of microspheres to the equilibrium. Also the conformation of proteins probably occurs to a certain degree of deformation or structural change due to the large area of contact. Recently, much interest has been shown in sulfonated microspheres, since sulfonate-group itself is one of components in bio-bodies, as well as is sensitive to the change of pH or ionic strength. Indeed, so far, scanty investigations have been performed in the full range. Also few researches have involved the data on adsorption rate and the maximum amount of protein adsorbed, or the reversibility of the process and conformational change of protein adsorbed as well.In present study, BSA (bovine serum albumin) was chosen as the model protein and sulfonated PMMA [poly(methyl methacrylate)] microspheres as the matrix to investigate the adsorption process.The purpose is to show some information especially the intrinsic information involved by the adsorption process Adsorption of BSA onto sulfonated microspheres (MS) has been investigated as a function of time, protein concentration and pH. The adsorption appears to be a reversible process and the presence of sulfonate groups can play important roles in the adsorption process, so as to increase the amount of protein adsorbed and influences the interaction of BSA molecules. Fig. 1 also shows that the reciprocation between unadsorbed and adsorbed BSA or rearrangement of adsorbed BSA molecules does not produce visible change in the properties of the adsorbed protein. Close to the isoelectric point of BSA (pI 4.7), the amount of protein adsorbed exhibits a maximum. A higher or lower pH results in the significant decrease of the adsorption amount. This is related to the dependence of BSA conformations at different pH conditions.  相似文献   
2.
Mesoporous polymer microspheres with gold (Au) nanoparticles inside their pores were prepared considering their surface functionality and porosity. The Au/polymer composite microspheres prepared were characterized by transmission electron microscope (TEM), X‐ray diffraction (XRD), and Brunauer–Emmett–Teller (BET) techniques. The results showed that the adsorption of Au nanoparticles could be increased by imparting the pore structure and surface‐functional groups into the supporting polymer microspheres (in this study, poly (ethylene glycol dimethacrylate‐co‐acrylonitrile) and poly (EGDMA‐co‐AN) system). Above all, from this study, it was established that the porosity of the polymer microspheres is the most important factor that determines the distribution and adsorption amount of face‐centered cubic (fcc) Au nanoparticles in the final products. Our study showed that the continuous adsorption of Au nanoparticles with the aid of the large surface area and surface interaction sites formed more favorably the Au/polymer composite microspheres. The BET measurements of Au/poly(EGDMA‐co‐AN) composite microspheres reveals that the adsorption of Au nanoparticles into the pores kept the pore structure intact and made it more porous. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 5627–5635, 2004  相似文献   
3.
Sulfonic cation exchangers with two ion exchange group concentrations (0.5 and 2.4 mmol/g, samples A and B, respectively) were obtained by sulfonation of a porous styrene (S) and divinylbenzene (DVB) copolymer with chlorosulfonic acid. Strong thermal decomposition of the sulfonated copolymer A, accompanied by significant changes in its porous structure, starts at ca. 400°C. The char has no sulfonic groups. After heat treatment at 400°C in steam, a sorbent was obtained (yield 65%) that shows higher phenol sorption than the untreated sample when related to the bed volume. The chlorosulfonic derivatives of the initial copolymer were less thermally resistant than the sulfonic ones obtained by hydrolysis. Pyrolysis of the cation exchanger B, in its H+ and Ca2+ forms, was carried out at 900°C (yield of both chars close to 30%). By subsequent steam activation at 800°C to a 50% burn-off of the char, sorbents with well-developed, but distinctly different, porous structures were obtained. The activated char from the sulfonated copolymer in its hydrogen form was highly microporous and indicated an effective surface area of 1180 m2/g. However, because of a low contribution of mesopores, its ability to adsorb phenol from the liquid phase was not very high. The activated char from the calcium-doped copolymer, indicating a smaller surface area (580 m2/g) but characterized by a well-developed mesoporosity, was a better sorbent for phenol. © 1994 John Wiley & Sons, Inc.  相似文献   
4.
A series of branched/crosslinked sulfonated polyimide (B/C‐SPI) membranes were prepared and evaluated as proton‐conducting ionomers based on the new concept of in situ crosslinking from sulfonated polyimide (SPI) oligomers and triamine monomers. Chemical branching and crosslinking in SPI oligomers with 1,3,5‐tris(4‐aminophenoxy)benzene as a crosslinker gave the polymer membranes very good water stability and mechanical properties under an accelerated aging treatment in water at 130 °C, despite their high ion‐exchange capacity (2.2–2.6 mequiv g?1). The resulting polymer electrolytes displayed high proton conductivities of 0.2–0.3 S cm?1 at 120 °C in water and reasonably high conductivities of 0.02–0.03 S cm?1 at 50% relative humidity. In a single H2/O2 fuel‐cell system at 90 °C, they exhibited high fuel‐cell performances comparable to those of Nafion 112. The B/C‐SPI membranes also displayed good performances in a direct methanol fuel cell with methanol concentrations as high as 50 wt % that were superior to those of Nafion 112. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 3751–3762, 2006  相似文献   
5.
The sulfonated poly(ether ether ketone sulfone) (SPEEKS)/heteropolyacid (HPA) composite membranes with different HPA content in SPEEKS copolymers matrix with different degree of sulfonation (DS) were investigated for high temperature proton exchange membrane fuel cells. Composite membranes were characterized by Fourier transfer infrared spectroscopy (FTIR) and scanning electron microscopy (SEM). FTIR band shifts suggested that the sulfonic acid groups on the copolymer backbone strongly interact with HPA particles. SEM pictures showed that the HPA particles were uniformly distributed throughout the SPEEKS membranes matrix and particle sizes decreased with the increment of copolymers' DS. The holes were not found in SPEEKS‐4/HPA30 (consisting of 70% SPEEKS copolymers with DS = 0.8 and 30% HPA) composite membrane after composite membranes were treated with boiling water for 24 h. Thermal stabilities of the composite membranes were better than those of pure sulfonated copolymers membranes. Although the composite membranes possessed lower water uptake, it exhibited higher proton conductivity for SPEEKS‐4/HPA30 especially at high temperature (above 100 °C). Its proton conductivity linearly increased from 0.068 S/cm at 25 °C to 0.095 S/cm at 120 °C, which was higher than 0.06 S/cm of Nafion 117. In contrast, proton conductivity of pure SPEEKS‐4 membrane only increased from 0.062 S/cm at 25 °C to 0.078 S/cm at 80 °C. At 120 °C, proton conductivity decreased to poor 0.073 S/cm. The result indicated that composite membranes exhibited high proton conductivity at high temperature. © 2006 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 44: 1967–1978, 2006  相似文献   
6.
复合Fe2O3纳米粒子的高分子微球的结构表征   总被引:6,自引:0,他引:6  
近年来,复合有机、无机粒子的高分子微球及其特殊性质越来越引起人们的兴趣与关注[1].获得有机、无机复合微球的方法很多,如在无机粒子存在下的乳液或无皂乳液聚会[2,3],通过可聚合的表面活性剂在粒子表面形成胶囊化层[4]以及共沉淀法等[5].这些无机粒子包括氧化钛、氧化铁、氧化铝及氧化硅等.Haga等[6]增发现包覆在聚合物粒子中的CdS与其本体的光电性质不同;单分散的聚合物微球可以在基片上被组装成二维乃至三维有序的结构[7].这为信息存储、立体印刷等领域提供了新途径.因此,将无机粒子与聚合物复合成为功能化粒子是一项有…  相似文献   
7.
核-壳型聚丙烯酸酯复合乳液   总被引:9,自引:0,他引:9  
简述了核-壳型聚丙烯酸酯复合乳液的合成方法、形态及其影响因素与判断方法、结构与性能等方面的研究进展;认为核-壳型复合乳液膜机械性能优良的原因是:核、壳两相间存在的过渡区适当地抑制了二者的相分离。  相似文献   
8.
Transport phenomenon of three sulfonated azo dyes, C.I. Acid Red 88, C.I. Direct Yellow 12, and C.I. Direct Blue 15 into water-swollen cellulose membranes has been analyzed on the basis of parallel transport theory by surface and pore diffusion. Langmuir equation was applied into the mass balance equation to estimate dye concentration in the pores. The results were compared with the results obtained by applying Freundlich equation in our previous papers. The surface diffusivity (D s) and the pore diffusivity (D p) for the parallel diffusion model obtained by applying Langmuir equation agreed with those obtained by applying Freudlich equation. The theoretical concentration profiles for parallel diffusion calculated usingD s andD p coincided accurately with the experimental data when we applied either Langmuir or Freundlich equations.  相似文献   
9.
A procedure has been developed to coat micron-sized poly(styrene-co-3-trimethoxysilyl propyl methacrylate) microspheres with a smooth layer of polysiloxane by the hydrolysis and condensation of methyl trimethoxylsilane (MTMS). Firstly, polystyrene microspheres containing silanol groups were prepared by conventional dispersion polymerization using 3-(trimethoxysilyl) propyl methacrylate (MPS) as a functional comonomer in an ethanol/water medium. Secondly, the synthesis of the polysiloxane shell was carried out using a sol–gel process of MTMS. The thickness of the shells can be easily varied with different copolymer seeds and MTMS feed ratio. When we used copolymer particles with 2.00 μm diameter as seeds, the thickness of the polysiloxane shells can be varied from 0.10 to 0.18 μm. The core/shell structure of the composite microspheres was characterized by transmission electron microscope (TEM).  相似文献   
10.
Narrow disperse microparticles are formed by dispersion polymerization of commercial divinylbenzene in acetonitrile or ethanol solution in the presence of 2,2′-azobis(2-methylpropionitrile) initiator and polyvinylpyrrolidone stabilizer. The particles have average diameters between 1 and 9 μm depending on monomer concentration, solvent, and temperature. While the smaller particles are relatively smooth, surface texture increases with diameter to give popcorn shapes at 9 μm diameter. High crosslinker concentration is shown to be essential for particle formation. © 1993 John Wiley & Sons, Inc.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号