首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   36篇
  免费   5篇
  国内免费   4篇
化学   31篇
力学   5篇
数学   2篇
物理学   7篇
  2024年   1篇
  2023年   1篇
  2022年   5篇
  2021年   5篇
  2020年   5篇
  2019年   3篇
  2018年   3篇
  2017年   2篇
  2016年   7篇
  2015年   1篇
  2014年   3篇
  2013年   4篇
  2012年   2篇
  2011年   1篇
  2010年   2篇
排序方式: 共有45条查询结果,搜索用时 15 毫秒
1.
鲁路  周长忍 《高分子科学》2016,34(2):185-194
Herein, we present a novel way for the production of self-healing hydrogels with stretch beyond 4200% than their initial length and relatively high tensile strength(0.1?0.25 MPa). Furthermore, the hydrogel was insensitive to notch. Even for the samples containing V-notches, a stretch of 2300% was demonstrated. The hydrogels were developed by in situ crosslinking of the self-assembled colloidal poly(acrylic acid)(PAA)/functionalized polyhedral oligomeric silsesquioxane(POSS) micelles. This was achieved by the addition of functionalized polyhedral oligomeric silsesquioxane with tertiary amines and hydroxyls(POSS-AH) into the PAA reaction solution. The POSS-AH led to micellar growth, then the dualcrosslinked network was constructed. One type of crosslink was formed by hydrogen-bonding and ionic interactions between PAA chains and POSS-AH, the other type of crosslink was formed by covalent bonds between PAA and bis(N,N'-methylenebis-acrylamide).  相似文献   
2.
Thin‐film polymer solar cell consisting of [6,6]‐phenyl‐C71‐butyric acid methyl ester (PC71BM) and poly[[4,8‐bis[(2‐ethylhexyl)oxy]benzo[1,2‐b:4,5‐b′]dithiophene‐2,6‐diyl][3‐fluoro‐2‐[(2‐ethylhexyl)carbonyl]thieno[3,4‐b]thiophenediyl]] (PTB7) demonstrates elastic stretchability with the aid of a high boiling point additive, 1,8‐diiodooctane (DIO). The usage of DIO not only helps to form uniformly distributed nanocrystalline grains, but may also create free volumes between the nano‐grains that allow for relative sliding between the nano‐grains. The relative sliding can accommodate large external deformation. Large dichroic ratios of the optical absorption of both PC71BM and PTB7 were observed under large‐strain deformation, indicating reorientation of the nanocrystalline PC71BM and PTB7 polymer chains along stretching direction. The dichroic ratio decreases to nearly 1.0 as the blend was relaxed to 0% strain. Therefore, the nanometer‐size grain blending morphology provides an approach to impart stretchability to organic semiconductors that are otherwise un‐stretchable. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2018 , 56, 814–820  相似文献   
3.
Adding insulating polymers to conjugated polymers is an efficient strategy to tailor their mechanical properties for flexible organic electronics. In this work, we selected two insulating polymers as additives for high-performance photoactive layers and investigated the mechanical and photovoltaic properties in organic solar cells (OSCs). The insulating polymers were found to reduce the electron mobilities in the photoactive layers, and hence the power conversion efficiencies were significantly decreased. More importantly, we found that the insulating polymers exhibited negative effect on the mechanical properties of the photoactive layers, with reduced Young's modulus and low crack onset strains. Further studies revealed that the insulating polymers had poor miscibility with the photoactive layers, providing large domains and more cavities in blend thin films, which act as negative effect for the tensile test. The studies indicate that rational selection of insulating polymers, especially enhancing the non-covalent interaction with the photoactive layers, will be critically important for the stretchable OSCs.  相似文献   
4.
史菁菁  郭星  陈人杰  吴锋 《化学进展》2016,28(4):577-588
柔性电池作为新型柔性电子设备的关键部件,得到越来越多的关注.近年来,柔性锂离子电池取得了实质性的发展,并在卷曲式显示器、触摸屏、可穿戴动力传感器和可植入医疗装置等方面得到应用.本文主要介绍柔性锂离子电池的发展现状,分别从集流体、电极材料和电解质三部分进行阐述,特别介绍拉伸性能的实现途径,根据其不同的结构特点,可以分为波形结构、点阵互联结构、纺织结构、折纸结构和电缆式结构,并提出将柔性材料与新型结构相结合可以促进柔性电池发展.同时,也对其他柔性电池体系,如锂硫电池、燃料电池和太阳能电池等的最新发展进行简单概述.最后,对目前柔性电池的发展过程中存在的问题进行了总结,并对其未来的发展方向与面临的挑战进行展望.  相似文献   
5.
Hydrogel-based strain sensors have been attracting immense attention for wearable electronic devices owing to their intrinsic soft characteristics and flexibility. However, developing hydrogel sensors with hightensile strength, stretchability, and strain sensitivity remains a great challenge. Herein, we report a technique to synthesize highly sensitive hydrogel-based strain sensors by integrating carbon nanofibers (CNFs) with a double-network (DN) polymer hydrogel matrix comprising of a physically cross-linked agar network and a covalently cross-linked polyacrylamide (PAAm) network. The resultant nanocomposite sensors display superior piezoresistive sensitivity with a hightrue gauge factor (GFT = 1.78) at an ultrahigh strain of 1,000%, a fast response time and linear correlation of ln(R/R0) and ln(L/L0) up to 1,000% strain. Most significantly, these sensors possess highmechanical strength (~0.6 MPa) and superb durability (>1,000 cycles at strain of 100%), stemming from the effective energy dissipation mechanism of the first agar network acting as sacrificial bonds and the CNFs serving as dynamic nanofillers. The combination of highstrain sensitivity and ultrahigh stretchability of hydrogel sensors makes it possible to sense both small mechanical deformations induced by human motions and large strain up to 1,000%.  相似文献   
6.
Liquid metal polymer composites are an emerging class of functional materials with potentially transformative impacts in wearable electronics, soft robotics, and human-computer interactions. By employing different processing methods, room temperature liquid metal inclusions can be embedded in insulating polymers like elastomers to incorporate functional properties of metals while the matrix remains soft and stretchable. These solid–liquid composites offer an interesting, yet complex multifunctional material system. In this review, we present an exclusive overview of the synthesis methods, structural and functional properties, and applications of gallium-based liquid metal polymer composites. Common methods to control the size of liquid metal inclusions and their interaction in polymers are discussed. Moreover, the effect of liquid metal microstructures on the overall properties of the composites is summarized. We also highlight the new trends in terms of material composition, printing process, and novel applications of liquid metal polymer composites in intelligent systems.  相似文献   
7.
8.
9.
Soft conducting materials in the shape of microfibers with various functional geometries are crucial for soft electronics. To develop highly stretchable conducting microfibers, a microfluidic method is used to prepare hydrogels in a double-network structure. Based on the coagulation of chitosan in cold water and simultaneous photopolymerization and photocrosslinking of N-isopropylacrylamide and N-diethylacrylamide, long microfibers with controlled uniform diameters can be obtained at the junction of a coaxially aligned microchannel device. After further reinforcement of the chitosan chain and exchange of the medium of the hydrogel microfiber with an aqueous electrolyte of lithium bis(trifluoromethanesulfonyl)imide, the prepared ionic hydrogel exhibits high conductivity and stretchability and dry-free properties. Owing to its mechanical robustness and ionic conductivity, we envision a highly stretchable soft electrode with the prepared ionic hydrogel microfiber that can be stretched up to 900%. This fiber has potential for applications in soft electronics and wearable devices.  相似文献   
10.
A soft ionic conductor can serve as an artificial nerve in an artificial muscle. A polyacrylamide hydrogel is synthesized containing a hygroscopic salt, lithium chloride. Two layers of the hydrogel are used as ionic conductors to sandwich a dielectric elastomer and fabricate a highly stretchable and transparent actuator. When the two layers of the hydrogels are subject to a voltage, the actuator reduces its thickness and expands. An areal strain of 134% is demonstrated. The voltage‐strain curves are calculated by using a model that accounts for the elastic constraint of the hydrogel and the inhomogeneous deformation of the actuator. For actuators fabricated with the hydrogel of various thicknesses and with the dielectric elastomer of various prestretches, excellent agreements are found between experimental data and theoretical predictions. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2014 , 52, 1055–1060  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号