首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   10篇
  免费   1篇
  国内免费   1篇
化学   12篇
  2021年   2篇
  2020年   2篇
  2019年   2篇
  2018年   2篇
  2017年   1篇
  2015年   1篇
  2007年   1篇
  1993年   1篇
排序方式: 共有12条查询结果,搜索用时 296 毫秒
1.
Repeated separation is a valuable method in counter current chromatography, especially on a preparative scale. It can greatly reduce the separation time and the consumption of solvent. In this study, an overlapping repeated separation method was developed. Meanwhile, this method was used to separate steviol glycosides and compared with conventional repeated separation method. The results show that both methods are effective ways for countercurrent chromatography to prepare compounds but the overlapping repeated separation method requires fewer time and solvent than the conventional repeated separation method. So this novel repeated separation method has enormous potential for a preparative separation of target compounds and is very useful for the high‐throughput purification of natural products.  相似文献   
2.
范广宇  冯峰  张峰  高飞  李晓明  梁振纲 《色谱》2018,36(4):351-355
建立了亲水相互作用色谱-三重四极杆质谱(HILIC-MS/MS)同时测定液体食品中6种人工合成甜味剂和8种甜菊糖苷类天然甜味剂的分析方法。样品经Waters Xbridge Amide色谱柱(150 mm×5.0 mm,3.5 μm)分离,以乙腈-10 mmol/L甲酸铵溶液(65:35,v/v)为流动相,流速为0.4 mL/min,柱温为35℃,然后以电喷雾电离(ESI)源,在多反应监测(MRM)、负离子模式下进行三重四极杆质谱检测。14种甜味剂在各自的范围内线性关系良好,相关系数均大于0.995,检出限为0.03~0.7 mg/kg,定量限为0.1~2.2 mg/kg。在2、5和20 mg/kg添加水平下,14种甜味剂的平均回收率为80.8%~108.7%,相对标准偏差为1.5%~7.7%(n=6)。该方法样品前处理操作简单,准确度高,灵敏度高,可用于液体食品中14种甜味剂的同时测定。  相似文献   
3.
A new laboratory method for isolating the glycosides stevioside and rebaudiosides A and C from leaves of Stevia rebaudiana was proposed. According to HPLC, the glycoside contents in plants grown in Russia (Voronezh Oblast’) and Ukraine (Crimea) were 5–6% (stevioside) and 0.3–1.3% (rebaudiosides A and C). __________ Translated from Khimiya Prirodnykh Soedinenii, No. 1, pp. 68–71, January–February, 2007  相似文献   
4.
This work aimed to establish the synergic role of arbuscular mycorrhizal fungi (AMF) symbiosis, phosphorus (P) fertilization and harvest time on the contents of stevia secondary metabolites. Consequently, steviol glycosides (SVglys) concentration and profile, total phenols and flavonoids as well as antioxidant assays, have been assessed in inoculated and no-inoculated plants, grown with or without P supply and collected at different growth stages(69, 89 and 123 days after transplanting).The obtained results suggest that the synthesis of stevia secondary metabolites is induced and/or modulated by all the investigated variability factors. In particular, AMF symbiosis promoted total SVglys content and positively influenced the concentration of some minor compounds (steviolbioside, dulcoside A and rebaudioside B), indicating a clear effect of mycorrhizal inoculation on SVglys biosynthetic pathway. Interestingly, only the mycorrhizal plants were able to synthesize rebaudioside B. In addition, P supply provided the highest levels of total phenols and flavonoids at leaf level, together with the maximum in vitro antioxidant activities (FRAP and ORAC). Finally, the harvest time carried out during the full vegetative phase enhanced the entire composition of the phytocomplex (steviolbioside, dulcoside A, stevioside, rebaudioside A, B, C. total phenols and flavonoids). Moreover, polyphenols and SVglys appeared to be the main contributors to the in vitro antioxidant capacity, while only total phenols mostly contributed to the cellular antioxidant activity (CAA). These findings provide original information about the role played by AMF in association with P supply, in modulating the accumulation of bioactive compounds during stevia growth. At the cultivation level, the control of these preharvest factors, together with the most appropriate harvest time, can be used as tools for improving the nutraceutical value of raw material, with particular attention to its exploitation as functional ingredient for food and dietary supplements and cosmetics.  相似文献   
5.
甜叶醇衍生物的合成及其生物活性   总被引:2,自引:0,他引:2  
本文对甜叶醇的结构进行修饰合成14个新化合物。其中以化合物4对棉花种子的发芽及根促进作用最佳。  相似文献   
6.
High salt levels are one of the significant and major limiting factors on crop yield and productivity. Out of the available attempts made against high salt levels, engineered nanoparticles (NPs) have been widely employed and considered as effective strategies in this regard. Of these NPs, titanium dioxide nanoparticles (TiO2 NPs) and selenium functionalized using chitosan nanoparticles (Cs–Se NPs) were applied for a quite number of plants, but their potential roles for alleviating the adverse effects of salinity on stevia remains unclear. Stevia (Stevia rebaudiana Bertoni) is one of the reputed medicinal plants due to their diterpenoid steviol glycosides (stevioside and rebaudioside A). For this reason, the current study was designed to investigate the potential of TiO2 NPs (0, 100 and 200 mg L−1) and Cs–Se NPs (0, 10 and 20 mg L−1) to alleviate salt stress (0, 50 and 100 mM NaCl) in stevia. The findings of the study revealed that salinity decreased the growth and photosynthetic traits but resulted in substantial cell damage through increasing H2O2 and MDA content, as well as electrolyte leakage (EL). However, the application of TiO2 NPs (100 mg L−1) and Cs–Se NPs (20 mg L−1) increased the growth, photosynthetic performance and activity of antioxidant enzymes, and decreased the contents of H2O2, MDA and EL under the saline conditions. In addition to the enhanced growth and physiological performance of the plant, the essential oil content was also increased with the treatments of TiO2 (100 mg L−1) and Cs–Se NPs (20 mg L−1). In addition, the tested NPs treatments increased the concentration of stevioside (in the non-saline condition and under salinity stress) and rebaudioside A (under the salinity conditions) in stevia plants. Overall, the current findings suggest that especially 100 mg L−1 TiO2 NPs and 20 mg L−1 Cs–Se could be considered as promising agents in combating high levels of salinity in the case of stevia.  相似文献   
7.
Governments are creating regulations for consumers to reduce their sugar intake, prompting companies to increase the ratio of artificial sweeteners in their products. However, there is evidence of some deleterious effects ascribed to the aforementioned synthetic agents and therefore consumers and food manufacturers have turned their attention to natural dietary sweeteners, such as stevia, to meet their sweetening needs. Stevia is generally considered safe; however, emerging scientific evidence has implicated the agent in gut microbial imbalance. In general, regulation of microbial behavior is known to depend highly on signaling molecules via quorum sensing (QS) pathways. This is also true for the gut microbial community. We, therefore, evaluated the possible role of these stevia-based natural sweeteners on this bacterial communication pathway. The use of a commercial stevia herbal supplement resulted in an inhibitory effect on bacterial communication, with no observable bactericidal effect. Purified stevia extracts, including stevioside, rebaudioside A (Reb A), and steviol revealed a molecular interaction, and possible interruption of Gram-negative bacterial communication, via either the LasR or RhlR receptor. Our in-silico analyses suggest a competitive-type inhibitory role for steviol, while Reb A and stevioside are likely to inhibit LasR-mediated QS in a non-competitive manner. These results suggest the need for further safety studies on the agents.  相似文献   
8.
Leaves of Stevia rebaudiana contain glycosides with sweetness and biological activity. However besides the major glycosides, there are other glycosides within extracts that may contribute to its activity, and therefore it is important to quantify them. In this work, an isocratic HPLC method was validated for determination of dulcoside A, steviolbioside, rebaudioside C and rebaudioside B. An HPLC method was performed using a C18 column (250 × 4.6 mm, particle size 5 µm) and a UV detector set at 210 nm. The mobile phase consisted of a 32:68 (v/v) mixture of acetonitrile and sodium phosphate buffer (10 mmol/L, pH 2.6), set to a flow rate of 1.0 mL/min. The calculated parameters were: sensitivity, linearity, limit of detection (LOD), limit of quantification (LOQ), accuracy and precision. The calibration curves were linear over the working range 25–150 µg/mL, with coefficient of correlation of ≥0.99 and coefficient of determination of ≥0.98. The LOD was 5.68–8.81 µg/mL, while the LOQ was 17.21–26.69 µg/mL. The percentage recoveries of fortified samples were 100 ± 10% and precision, relative standard deviation, was <10%. The method validation showed accuracy, linearity and precision; therefore this method can be applied for quantitative analysis of minor steviol glycosides in S. rebaudiana leaves. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   
9.
The use of sweeteners extracted from leaves of the plant species Stevia rebaudiana is increasing worldwide. They are recognized as generally recognized as safe by the US‐FDA and approved by EU‐European Food Safety Authority, with some recommendation on the daily dosage that should not interfere with glucose metabolism. The results presented here introduce an easy analytical approach for the identification and assay of Stevia sweeteners in commercially available soft drink, based on liquid chromatography coupled to tandem mass spectrometry, using a natural statin‐like molecule, Brutieridin, as internal standard. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   
10.
Steviol glycosides were subjected to bacteria present in a soil sample collected from a Stevia plantation in Paraguay. During the incubation experiments, next to the aglycon steviol, steviol degradation products were also formed. X-ray analysis and NMR methods in combination with chemical synthesis and GIAO NMR calculations were used to fully characterize the structure of these compounds as a tricyclic ketone and the corresponding reduced form. They were nicknamed monicanone and monicanol. The latter has the (S)-configuration at the alcohol site.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号