首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   39篇
  免费   3篇
  国内免费   7篇
化学   46篇
晶体学   1篇
物理学   2篇
  2023年   1篇
  2022年   3篇
  2021年   1篇
  2018年   1篇
  2017年   3篇
  2016年   3篇
  2015年   3篇
  2014年   3篇
  2013年   3篇
  2012年   5篇
  2011年   2篇
  2010年   3篇
  2009年   4篇
  2008年   3篇
  2007年   5篇
  2006年   2篇
  2005年   2篇
  2003年   2篇
排序方式: 共有49条查询结果,搜索用时 171 毫秒
1.
2.
CRISPR-Cas12a系统的反式切割活性在其识别特定的DNA激活序列后被激活,这不仅能实现特定DNA靶标的直接定量分析,同时也为构建针对多种生物标志物的体外传感体系带来了新的思路。然而,已有文献中所采用的双链DNA(dsDNA)和单链DNA(ssDNA)激活序列结构多种多样,缺乏全面、系统的设计指导原则。针对该问题,该文系统研究了不同结构的DNA激活序列对LbaCas12a反式切割活性的影响。通过对比研究,得出以下结论:(1)前间区序列邻近基序(PAM)位点有助于LbaCas12a更高效地靶向结合dsDNA激活序列和ssDNA激活序列;(2)PAM近端区域缺少序列片段会降低Cas12a-crRNA定位激活序列的效率;(3)删除PAM远端序列片段有利于增强LbaCas12a的反式切割活性;(4)由于省略了dsDNA解链过程,ssDNA激活序列在激活LbaCas12a的反式切割活性方面普遍比dsDNA激活序列产生的效果更好。根据这些发现,该文提出了一种LbaCas12a所青睐的高效激活序列结构,其激活的LbaCas2a反式酶切活性较采用含PAM位点的标准dsDNA激活序列高出3.7倍。研究结果为构建基于CRISPR-Cas12a的高效体外生物传感系统提供了重要支撑。  相似文献   
3.
Aptamers which specifically recognize targets are selected from random oligonucleotide library using systematic evolution of ligands by exponential enrichment (SELEX). In this paper, capillary electrophoresis (CE) as a separation approach has been introduced to SELEX procedure. The high efficiency of CE gives rise to greatly shorten the selection procedure. The results from enzyme-linked assay and dot blot experiment show that an enrichment pool has been obtained after four rounds selection, which can specifically recognize ricin. __________ Translated from Chemical Journal of Chinese Universities, 2006, 27(10): 1,840–1,843 [译自: 高等学校化学学报]  相似文献   
4.
Graphene is scientifically and commercially important because of its unique molecular structure which is monoatomic in thickness, rigorously two-dimensional and highly conjugated. Consequently, graphene exhibits exceptional electrical, optical, thermal and mechanical properties. Herein, we critically discuss the surface modification of graphene, the specific advantages that graphene-based materials can provide over other materials in sensor research and their related chemical and electrochemical properties. Furthermore, we describe the latest developments in the use of these materials for sensing technology, including chemical sensors and biosensors and their applications in security, environmental safety and diseases detection and diagnosis.  相似文献   
5.
梅芳  赵新颖  屈锋 《色谱》2012,30(12):1229-1234
以细胞色素c(Cyt c)为碱性蛋白质模型,建立了毛细管电泳评价Cyt c与3种不同链长的单链脱氧核糖核酸(ssDNA)库相互作用的评价方法,研究了离子强度对Cyt c与ssDNA库相互作用的影响。比较了Cyt c与含有20、40和60个随机碱基序列的3种不同链长的ssDNA库的作用及基于未涂层毛细管和涂层毛细管的毛细管区带电泳方法。因碱性蛋白质在未涂层毛细管管壁上存在吸附,因此利用未涂层毛细管区带电泳不能区别3种ssDNA库与其作用的差异。利用涂层毛细管电泳法,在压力辅助的反向电压下,根据游离ssDNA库的峰面积变化可比较3种ssDNA库与细胞色素c的相互作用差异。结果表明,含有20个随机寡核苷酸链长的ssDNA库与Cty c的作用最强。此外,NaCl浓度显著影响Cyt c与ssDNA60库的作用。在优化的实验条件下,0.02 mol/L NaCl有利于两者的相互作用。调节盐浓度可抑制非特异性静电作用,能提高碱性蛋白质适配体的单轮筛选效率。利用未涂层毛细管电泳分析复合物及游离ssDNA库的峰面积变化,可优化有利复合物形成的盐浓度。  相似文献   
6.
对金基体上自组装ssDNA及dsDNA与钴邻菲啉配合物离子([Co(phen)3]2+/3+)相互作用进行电化学现场表面增强拉曼光谱(SERS)研究,获得相互作用位点及相互作用模式的信息.dsDNA与[Co(phen)3]2+/3+存在一定的嵌插作用,即配合物通过配体邻菲啉(phen)环以嵌插模式结合在碱基A-T及G-C富集区,同时与磷酸二酯键PO2结合,并伴随dsDNA螺旋构象由B型向A型转变;而[Co(phen)3]2+/3+则是以静电模式与ssDNA的磷酸二酯键PO2及脱氧核糖组成的骨架相互作用.  相似文献   
7.
The development and characterization of a magnetic bead (MB)-quantum dot (QD) nanoparticles based assay capable of quantifying pathogenic bacteria is presented here. The MB-QD assay operates by having a capturing probe DNA selectively linked to the signaling probe DNA via the target genomic DNA (gDNA) during DNA hybridization. The signaling probe DNA is labeled with fluorescent QD565 which serves as a reporter. The capturing probe DNA is conjugated simultaneously to a MB and another QD655, which serve as a carrier and an internal standard, respectively. Successfully captured target gDNA is separated using a magnetic field and is quantified via a spectrofluorometer. The use of QDs (i.e., QD565/QD655) as both a fluorescence label and an internal standard increased the sensitivity of the assay. The passivation effect and the molar ratio between QD and DNA were optimized. The MB-QD assay demonstrated a detection limit of 890 zeptomolar (i.e., 10−21 mol L−1) concentration for the linear single stranded DNA (ssDNA). It also demonstrated a detection limit of 87 gene copies for double stranded DNA (dsDNA) eaeA gene extracted from pure Escherichia coli (E. coli) O157:H7 culture. Its corresponding dynamic range, sensitivity, and selectivity were also presented. Finally, the bacterial gDNA of E. coli O157:H7 was used to highlight the MB-QD assay's ability to detect below the minimum infective dose (i.e., 100 organisms) of E. coli O157:H7 in water environment.  相似文献   
8.
Acridine Orange (AO) forms H-dimer in solid state and in ultra thin films. However, H dimer of AO reduces its efficiency as a usefull material for fluorescence probe. In the present work detailed investigations has been done on the interaction of AO with different forms of DNA in order to check the effectiveness in controlling the dimeric sites of AO in the Layer by Layer (LbL) self assembled film. It was found that single stranded DNA (ssDNA) is most effective than the dsDNA and coil-shaped DNA in controlling the dimeric sites of AO in LbL film.  相似文献   
9.
Graphene field-effect transistors (GFET) have emerged as powerful detection platforms enabled by the advent of chemical vapor deposition (CVD) production of the unique atomically thin 2D material on a large scale. DNA aptamers, short target-specific oligonucleotides, are excellent sensor moieties for GFETs due to their strong affinity to graphene, relatively short chain-length, selectivity, and a high degree of analyte variability. However, the interaction between DNA and graphene is not fully understood, leading to questions about the structure of surface-bound DNA, including the morphology of DNA nanostructures and the nature of the electronic response seen from analyte binding. This review critically evaluates recent insights into the nature of the DNA graphene interaction and its affect on sensor viability for DNA, small molecules, and proteins with respect to previously established sensing methods. We first discuss the sorption of DNA to graphene to introduce the interactions and forces acting in DNA based GFET devices and how these forces can potentially affect the performance of increasingly popular DNA aptamers and even future DNA nanostructures as sensor substrates. Next, we discuss the novel use of GFETs to detect DNA and the underlying electronic phenomena that are typically used as benchmarks for characterizing the analyte response of these devices. Finally, we address the use of DNA aptamers to increase the selectivity of GFET sensors for small molecules and proteins and compare them with other, state of the art, detection methods.  相似文献   
10.
A post-PCR nucleic acid work by comparing experimental data, from electrochemical genosensors, and bioinformatics data, derived from the simulation of the secondary structure folding and prediction of hybridisation reaction, was carried out in order to rationalize the selection of ssDNA probes for the detection of two Bonamia species, B. exitiosa and B. ostreae, parasites of Ostrea edulis.Six ssDNA probes (from 11 to 25 bases in length, 2 thiolated and 4 biotinylated) were selected within different regions of B. ostreae and B. exitiosa PCR amplicons (300 and 304 bases, respectively) with the aim to discriminate between these parasite species. ssDNA amplicons and probes were analyzed separately using the “Mfold Web Server” simulating the secondary structure folding behaviour. The hybridisation of amplicon-probe was predicted by means of “Dinamelt Web Server”. The results were evaluated considering the number of hydrogen bonds broken and formed in the simulated folding and hybridisation process, variance in gaps for each sequence and number of available bases. In the experimental part, thermally denatured PCR products were captured at the sensor interface via sandwich hybridisation with surface-tethered probes (thiolated probes) and biotinylated signalling probes. A convergence between analytical signals and simulated results was observed, indicating the possibility to use bioinformatic data for ssDNA probes selection to be incorporated in genosensors.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号