首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   318篇
  免费   67篇
  国内免费   51篇
化学   230篇
晶体学   2篇
力学   85篇
综合类   14篇
数学   28篇
物理学   77篇
  2024年   3篇
  2023年   10篇
  2022年   25篇
  2021年   24篇
  2020年   27篇
  2019年   31篇
  2018年   12篇
  2017年   23篇
  2016年   25篇
  2015年   34篇
  2014年   22篇
  2013年   23篇
  2012年   14篇
  2011年   11篇
  2010年   8篇
  2009年   9篇
  2008年   10篇
  2007年   17篇
  2006年   11篇
  2005年   12篇
  2004年   11篇
  2003年   6篇
  2002年   2篇
  2001年   6篇
  2000年   7篇
  1999年   12篇
  1998年   11篇
  1997年   10篇
  1996年   10篇
  1995年   8篇
  1994年   2篇
排序方式: 共有436条查询结果,搜索用时 22 毫秒
1.
In this paper, we have developed a load-bearing outer skin for antennas, which is termed a composite smart structure (CSS). The CSS is a multilayer composite sandwich structure in which antenna layers are inserted. A direct-feed stacked patch antenna is considered. A design procedure including the structure design, material selection, and design of antenna elements in order to obtain high electric and mechanical performances is presented. An optimized honeycomb thickness is selected for efficient radiation and impedance characteristics. High gain conditions can be obtained by placing the outer facesheet in the resonance position, which is at about a half wavelength distance from the ground plane. The measured electrical performances show that the CSS has a great bandwidth (over 10%) and a higher gain than an antenna without a facesheet and has excellent mechanical performances, owing to the composite laminates and honeycomb cores. The CSS concept can be extended to give a useful guide for manufacturers of structural body panels and for antenna designers.  相似文献   
2.
本文讨论机敏结构的制作方法、集成光纤传感器存在的问题、现有解决方法和今后的研究方向。  相似文献   
3.
Nano-structured WO3-TiO2 layers were prepared by the sol-gel route. To obtain transparent, porous and crack free layers up to 0.8 μ m with a single dipping cycle a templating strategy was used. As a template three-dimensionally network based on organically modified silane was introduced to the WO3 and TiO2 sols. The WO3 layers were dip-coated onto the conductive glass substrate (TCO) and the TiO2 layers on the top of the WO3 layer. The morphology and the structure of the layers were determined by Scanning Electron Microscopy (SEM), High Resolution Transmission Electron Microscopy (HR-TEM), Energy Dispersive X-Ray Spectroscopy (EDXS), Auger and Infrared spectroscopy. SEM image of the WO3-TiO2 layer confirmed the nano-porosity of the layers and give the size of the particles of about 10 nm for TiO2 and 30 nm for WO3 layer. Further analysis indicated that the titanium sol penetrates the WO3 layer. Particles in the WO3 layer consist of a crystalline monoclinic WO3 core surrounded by a 5–10 nm amorphous phase consisting of WO3, TiO2 and SiO2. The WO3-TiO2 layers were used to assemble all solid state photoelectrochromic (PE) devices. Under 1 sun irradiation (1000 W/m2) the visible transmittance of the PE device changes from 62% to 1.6%. The colouring and bleaching processes last about 10 minutes.  相似文献   
4.
Historically, threat information sharing has relied on manual modelling and centralised network systems, which can be inefficient, insecure, and prone to errors. Alternatively, private blockchains are now widely used to address these issues and improve overall organisational security. An organisation’s vulnerabilities to attacks might change over time. It is utterly important to find a balance among a current threat, the potential countermeasures, their consequences and costs, and the estimation of the overall risk that this provides to the organisation. For enhancing organisational security and automation, applying threat intelligence technology is critical for detecting, classifying, analysing, and sharing new cyberattack tactics. Trusted partner organisations can then share newly identified threats to improve their defensive capabilities against unknown attacks. On this basis, organisations can help reduce the risk of a cyberattack by providing access to past and current cybersecurity events through blockchain smart contracts and the Interplanetary File System (IPFS). The suggested combination of technologies can make organisational systems more reliable and secure, improving system automation and data quality. This paper outlines a privacy-preserving mechanism for threat information sharing in a trusted way. It proposes a reliable and secure architecture for data automation, quality, and traceability based on the Hyperledger Fabric private-permissioned distributed ledger technology and the MITRE ATT&CK threat intelligence framework. This methodology can also be applied to combat intellectual property theft and industrial espionage.  相似文献   
5.
The linear 3D piezoelasticity theory in conjunction with the versatile transfer matrix approach and the wave equation for the internal acoustic domain are employed for active non-stationary vibroacoustic response control of an arbitrarily thick, tri-laminate, fluid-filled, simply supported, piezocomposite cylindrical tank, excited by arbitrary (non-axisymmetric) time-dependent on-surface mechanical loads. The smart structure is composed of a supporting core layer of functionally graded orthotropic material perfectly bonded to inner and outer spatially distributed radially polarized functionally graded piezoceramic sensor and uniform force actuator (FGPM) layers. Active vibration damping is implemented by transferring the accumulated voltage on the sensor layer to the piezoelectric actuator layer in context of proportional and derivative control laws. Durbin's numerical inverse Laplace transform scheme is utilized to calculate the time response histories of the relevant interface displacement/stress components, center-point acoustic pressure, and actuator voltage, for selected loading configurations (i.e., concentrated step, impulse, and moving external loads). Numerical simulations demonstrate the effectiveness of the adopted distributed sensing/actuation configuration together with the active damping control strategy in suppressing the vibroacoustic response of a three-layered (Ba2NaNb5O15/Al/PZT4) water-filled piezoelastic cylindrical tank. Limiting cases are considered and the validity of results is established by comparison with the available data as well as with the aid of a commercial finite element package.  相似文献   
6.
A proof‐of‐concept design for autonomous, self‐propelling motors towards value‐added product synthesis and separation is presented. The hybrid motor design consists of two distinct functional blocks. The first, a sodium borohydride (NaBH4) granule, serves both as a reaction prerequisite for the reduction of vanillin and also as a localized solid‐state fuel in the reaction mixture. The second capping functional block consisting of a graphene–polymer composite serves as a hydrophobic matrix to attract the reaction product vanillyl alcohol (VA), resulting in facile separation of this edible value‐added product. These autonomously propelled motors were fabricated at a length scale down to 400 μm, and once introduced in the reaction environment showed rapid bubble‐propulsion followed by high‐purity separation of the reaction product (VA) by the virtue of the graphene–polymer cap acting as a mesoporous sponge. The concept has excellent potential towards the synthesis/isolation of industrially important compounds, affinity‐based product separation, pollutant remediation (such as heavy metal chelation/adsorption), as well as localized fuel‐gradients as an alternative to external fuel dependency.  相似文献   
7.
Composites based on biocompatible thermoplastic elastomer styrene‐ethylene/butylene‐styrene (SEBS) as matrix and multi‐walled carbon nanotubes (MWCNT) as nanofillers show excellent mechanical and piezoresistive properties from low to large deformations. The MWCNT/SEBS composites have been prepared following a green solvent approach, to extend their range of applicability to biomedical applications. The obtained composites with 2, 4, and 5 wt % MWCNT content provide suitable piezoresistive response up to 80% deformation with a piezoresistive sensibility near 2.7, depending on the applied strain and MWCNT content. Composite sensors were also developed by spray and screen printing and integrated with an electronic data acquisition system with RF communication. The possibility to accurately control the composites properties and performance by varying MWCNT content, viscosity, and mechanical properties of the polymer matrix, shows the large potential of the system for the development of large deformation printable piezoresistive sensors. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2016 , 54, 2092–2103  相似文献   
8.
Autonomous self‐propelled catalytic microjets are envisaged as an important technology in biomedical applications, including drug delivery, micro/nanosurgery, and active dynamic bioassays. The direct in vivo application of these microjets, specifically in blood, is however impeded by insufficient knowledge on the in vivo viability of the technique. This study highlights the effect of blood proteins on the viability of the microjets. The presence of blood proteins, including serum albumin and γ‐globulins at physiological concentrations, has been found to dramatically reduce the viability of the microjets. The reduction of viability has been measured in terms of a lower number of active microjets and a decrease in the velocity of propulsion. It is clear from this study that in order for microjets to function in biomedical applications, different modes of propulsion besides platinum‐catalyzed oxygen bubble ejection must be employed. These findings have serious implications for the biomedical applications of catalytic microjets.  相似文献   
9.
Poly(N-isopropylacrylamide) (PNIPAAm)-based thermo-responsive surfaces can switch their wettability (from wettable to non-wettable) and adhesion (from sticky to non-sticky) according to external temperature changes. These smart surfaces with switchable interfacial properties are playing increasingly important roles in a diverse range of biomedical applications; these controlling cell-adhesion behavior has shown great potential for tissue engineering and disease diagnostics. Herein we reviewed the recent progress of research on PNIPAAm-based thermo-responsive surfaces that can dynamically control cell adhesion behavior. The underlying response mechanisms and influencing factors for PNIPAAm-based surfaces to control cell adhesion are described first. Then, PNIPAAm-modified two-dimensional flat surfaces for cell-sheet engineering and PNIPAAm-modified three-dimensional nanostructured surfaces for diagnostics are summarized. We also provide a future perspective for the development of stimuli-responsive surfaces.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号