首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1426篇
  免费   78篇
  国内免费   214篇
化学   1288篇
晶体学   7篇
力学   139篇
综合类   19篇
数学   10篇
物理学   255篇
  2024年   2篇
  2023年   8篇
  2022年   22篇
  2021年   35篇
  2020年   69篇
  2019年   50篇
  2018年   30篇
  2017年   94篇
  2016年   87篇
  2015年   77篇
  2014年   60篇
  2013年   171篇
  2012年   77篇
  2011年   60篇
  2010年   55篇
  2009年   56篇
  2008年   57篇
  2007年   72篇
  2006年   74篇
  2005年   65篇
  2004年   73篇
  2003年   55篇
  2002年   72篇
  2001年   41篇
  2000年   30篇
  1999年   29篇
  1998年   15篇
  1997年   27篇
  1996年   24篇
  1995年   26篇
  1994年   16篇
  1993年   22篇
  1992年   15篇
  1991年   9篇
  1990年   6篇
  1989年   8篇
  1988年   7篇
  1987年   5篇
  1986年   5篇
  1985年   2篇
  1984年   1篇
  1983年   1篇
  1982年   2篇
  1981年   5篇
  1979年   1篇
排序方式: 共有1718条查询结果,搜索用时 15 毫秒
1.
The viscoelastic properties of binary blends of nitrile rubber (NBR) and isotactic polypropylene (PP) of different compositions have been calculated with mean‐field theories developed by Kerner. The phase morphology and geometry have been assumed, and experimental data for the component polymers over a wide temperature range have been used. Hashin's elastic–viscoelastic analogy principle is used in applying Kerner's theory of elastic systems for viscoelastic materials, namely, polymer blends. The two theoretical models used are the discrete particle model (which assumes one component as dispersed inclusions in the matrix of the other) and the polyaggregate model (in which no matrix phase but a cocontinuous structure of the two is postulated). A solution method for the coupled equations of the polyaggregate model, considering Poisson's ratio as a complex parameter, is deduced. The viscoelastic properties are determined in terms of the small‐strain dynamic storage modulus and loss tangent with a Rheovibron DDV viscoelastometer for the blends and the component polymers. Theoretical calculations are compared with the experimental small‐strain dynamic mechanical properties of the blends and their morphological characterizations. Predictions are also compared with the experimental mechanical properties of compatibilized and dynamically cured 70/30 PP/NBR blends. The results computed with the discrete particle model with PP as the matrix compare well with the experimental results for 30/70, 70/30, and 50/50 PP/NBR blends. For 70/30 and 50/50 blends, these predictions are supported by scanning electron microscopy (SEM) investigations. However, for 30/70 blends, the predictions are not in agreement with SEM results, which reveal a cocontinuous blend of the two. Predictions of the discrete particle model are poor with NBR as the matrix for all three volume fractions. A closer agreement of the predicted results for a 70/30 PP/NBR blend and the properties of a 1% maleic anhydride modified PP or 3% phenolic‐modified PP compatibilized 70/30 PP/NBR blend in the lower temperature zone has been observed. This may be explained by improved interfacial adhesion and stable phase morphology. A mixed‐cure dynamically vulcanized system gave a better agreement with the predictions with PP as the matrix than the peroxide, sulfur, and unvulcanized systems. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 1417–1432, 2004  相似文献   
2.
The molecular orientation and strain‐induced crystallization of synthetic rubbers—polyisoprene rubber, polybutadiene rubber, and butyl rubber [poly(isobutylene isoprene)]—during uniaxial deformation were studied with in situ synchrotron wide‐angle X‐ray diffraction. The high intensity of the synchrotron X‐rays and the new data analysis method made it possible to estimate the mass fractions of the strain‐induced crystals and amorphous chain segments in both the oriented and unoriented states. Contrary to the conventional concept, the majority of the molecules (50–75%) remained in an unoriented amorphous state at high strains. Each synthetic rubber showed a different behavior of strain‐induced crystallization and molecular orientation during extension and retraction. Our results confirmed the occurence of strain‐induced networks in the synthetic rubbers due to the inhomogeneity of the crosslink distribution. The strain‐induced networks containing microfibrillar crystals and oriented amorphous tie chains were responsible for the ultimate mechanical properties. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 956–964, 2004  相似文献   
3.
In this work, preparation and properties of different nanoclays modified by organic amines (octadecyl amine, a primary amine, and hexadecyltrimethylammonium bromide, a tertiary amine) and brominated polyisobutylene‐co‐paramethylstyrene (BIMS)‐clay nanocomposites are reported. The clays and the rubber nanocomposites have been characterized with the help of Fourier transform infrared spectroscopy (FTIR), transmission electron microscopy (TEM), and X‐ray diffraction (XRD). The X‐ray diffraction peaks observed in the range of 3 °–10 ° for the modified clays disappear in the rubber nanocomposites. TEM photographs show predominantly exfoliation of the clays in the range of 12 ± 4 nm in the BIMS. In the FTIR spectra of the nanocomposites, there are common peaks of virgin rubber as well as those of the clays. Excellent improvement in mechanical properties like tensile strength, elongation at break, and modulus is observed on incorporation of the nanoclays in the BIMS. Structure‐property correlation in the above nanocomposites is attempted. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 4489–4502, 2004  相似文献   
4.
For properly chosen elastomer compounds, thermorheological characterization is combined with an examination of the variation of the wet sliding friction with temperature. A conceptual argument leads to the assumption that the wet sliding friction should maximize at the energy dissipation peak associated with the dynamic softening transition at a characteristic frequency determined by the sliding speed and the effective smallest surface asperity scale. The dynamic softening transition is characterized with the peak in tan δ/Gn, where tan δ is the loss tangent, G′ is the elastic modulus, and n is a constant between 0 and 1. The William–Landel–Ferry transform is uncritically applied for extrapolating the position of the peak in tan δ/Gn at high frequencies. Even based on the criterion of tan δ, the results obtained on a concrete surface indicate that the effective smallest asperity scale is of order of 100 μm. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 2467–2478, 2004  相似文献   
5.
The fracture behavior of a core-shell rubber (CSR) modified epoxy is investigated using both fracture mechanics and microscopy tools. The CSR-modified epoxy is found to be toughened via numerous line-array cavitations of the CSR particles, followed by plastic flow of the epoxy matrix. The toughening effect via the above craze-like damage process is found to be as effective as that of the well-known widespread rubber cavitation/matrix shear yielding mechanisms. The conditions for triggering the craze-like damage appear to be both stress state and rubber concentration dependent. The type of rubber tougheners utilized also plays a critical role in triggering this rather unusual craze-like damage in epoxy systems. © 1993 John Wiley & Sons, Inc.  相似文献   
6.
A constitutive phenomenological model completing the Gent‐Thomas concept is carried out to formulate laws governing the hyperelastic behavior of incompressible rubber materials. It is shown that the phenomenological Gent‐Thomas model (1958) and the constrained chain model (1992) give similar precise results at small to moderate deformation. On the other hand, comparisons of the outcome of the proposed model with that of the molecular model from the combined concepts of Flory‐Erman and Boyce‐Arruda (2000), and with those of the phenomenological models of Ogden (1982), Yeoh‐Fleming (1997), Pucci‐Saccomandi (2002) and Beda (2005) are made. Residual inconveniences raised by attractive continuum models in rubber elasticity literature have been successfully overcome. Results from both the statistical and phenomenological mechanics concepts are compared with the data of some useful classical materials (rubbers of Treloar, Rivlin‐Saunders, Pak‐Flory and Yeoh‐Fleming). The results permit one to see salient equivalence of the two theories for a more reliable prediction of stress‐stretch response for all states of any mode of deformation. A complete and exhaustive analysis of the Mooney plot that combines small and very large extension‐compression has been quite essential in assessing the validity of models. A method of identification of material parameters is presented and data of the simple tension suffice for the determination of the parameter values. It is shown that the ordinary identification procedures, such as the usual least squares, a very much used numerical method in materials investigation, can be unsuitable in some cases of hyperelastic modeling. © 2007 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 1713–1732, 2007  相似文献   
7.
Crosslinking behaviors of acrylonitrile butadiene rubber (NBR)/poly (vinyl chloride) (PVC) alloy, filled with anhydrous copper sulfate (CuSO4) particles, were investigated for the first time by dynamic mechanical analysis (DMA) under hetero and isothermal modes, respectively. In the heterothermal testing, (NBR/PVC)/CuSO4 compound showed two marked increases in the storage modulus (E′), corresponding to coordination crosslinking of NBR-CuSO4 and self-crosslinking of NBR and PVC respectively. During the isothermal testing, a dramatic increase in E′ was found at the initial stage while that of original NBR/PVC alloy was not detected. The marked increase in E′ of (NBR/PVC)/CuSO4 compound was mainly due to the crosslinking induced by coordination between  CN and Cu2+. The increasing extent of E′ increased with the rise of CuSO4 content, suggesting the formation of a greater number of crosslinks. Moreover, the activation energy (Ea) of crosslinking process was about 139 kJ/mol. In this work, fourier transform infrared spectrum (FT-IR) and equilibrium swelling method were also performed for the characterization of the compound. © 2006 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 41–51, 2007  相似文献   
8.
Summary The detachment of a rubber matrix from a rigid inclusion under monotonic loading and at subsequent relaxation is investigated within two dimensional analysis. Examined are stress–strain experimental data acquired with the help of a test bed equipped with a digital image-acquisition device. The influence of the interfacial bonding strength and the particle size on the detachment process is analyzed. The influence of the interfacial bonding strength is visible in the stress–strain diagram of loading and in the recorded images. The relaxation test reveals no influence of the bonding strength on the stress-relaxation. However, the image analysis indicates a secondary transient creep of the contour of detachment, which depends on the interfacial bonding.  相似文献   
9.
Cardanol-based novolac-type phenolic resins were synthesized with different mole ratios of cardanol-to-formaldehyde, viz., 1:0.6, 1:0.7, and 1:0.8. These novolac resins were epoxidized with molar excess of epichlorohydrin at 120 °C in basic medium. The epoxidized novolac resins were, separately, blended with different weight ratios of carboxyl-terminated polybutadiene liquid rubber ranging between 0-25 wt% with an interval of 5 wt%. All the blends were cured at 150 °C with 40 wt% polyamide. The formation of various products during the curing of blend samples has been studied by Fourier-transform infra-red spectroscopic analysis. The tensile strength and elongation-at-break of the cured samples increased up to 15 wt% in the blend and decreased thereafter. This blend sample was also found to be most thermally stable system. The blend morphology, studied by scanning electron microscopy analysis, was finally correlated with the structural and property changes in the blends.  相似文献   
10.
The reinforcement and nonlinear viscoelastic behavior have been investigated for silica (SiO2) filled solution‐polymerized styrene butadiene rubber (SSBR). Experimental results reveal that the nonlinear viscoelastic behavior of the filled rubber is similar to that of unfilled SSBR, which is inconsistent with the general concept that this characteristic comes from the breakdown and reformation of the filler network. It is interesting that the curves of either dynamic storage modulus (G′) or loss tangent (tan δ) versus strain amplitude (γ) for the filled rubber can be superposed, respectively, on those for the unfilled one, suggesting that the primary mechanism for the Payne effect is mainly involved in the nature of the entanglement network in rubbery matrix. It is believed there exists a cooperation between the breakdown and reformation of the filler network and the molecular disentanglement, resulting in enhancing the Payne effect and improving the mechanical hysteresis at high strain amplitudes. Moreover, the vertical and the horizontal shift factors for constructing the master curves could be well understood on the basis of the reinforcement factor f(φ) and the strain amplification factor A(φ), respectively. The surface modification of SiO2 causes a decrease in f(φ), which is ascribed to weakeness of the filler–filler interaction and improvement of the filler dispersion. However, the surface nature of SiO2 hardly affects A(φ). © 2007 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 2594‐2602, 2007  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号