首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   27篇
  免费   3篇
化学   30篇
  2023年   1篇
  2021年   1篇
  2020年   3篇
  2019年   1篇
  2018年   3篇
  2013年   2篇
  2012年   2篇
  2011年   2篇
  2010年   2篇
  2009年   2篇
  2008年   1篇
  2006年   1篇
  2003年   2篇
  2002年   1篇
  1995年   1篇
  1994年   1篇
  1991年   1篇
  1989年   1篇
  1987年   2篇
排序方式: 共有30条查询结果,搜索用时 15 毫秒
1.
Compared to the biological world's rich chemistry for functionalizing carbon, enzymatic transformations of the heavier homologue silicon are rare. We report that a wild‐type cytochrome P450 monooxygenase (P450BM3 from Bacillus megaterium, CYP102A1) has promiscuous activity for oxidation of hydrosilanes to give silanols. Directed evolution was applied to enhance this non‐native activity and create a highly efficient catalyst for selective silane oxidation under mild conditions with oxygen as the terminal oxidant. The evolved enzyme leaves C?H bonds present in the silane substrates untouched, and this biotransformation does not lead to disiloxane formation, a common problem in silanol syntheses. Computational studies reveal that catalysis proceeds through hydrogen atom abstraction followed by radical rebound, as observed in the native C?H hydroxylation mechanism of the P450 enzyme. This enzymatic silane oxidation extends nature's impressive catalytic repertoire.  相似文献   
2.
3.
We report the spectroscopic characterization of protonated monosilanol (SiH3OH2+) isolated in the gas phase, thus providing the first experimental determination of the structure and bonding of a member of the elusive silanol family. The SiH3OH2+ ion is generated in a silane/water plasma expansion, and its structure is derived from the IR photodissociation (IRPD) spectrum of its Ar cluster measured in a tandem mass spectrometer. The chemical bonding in SiH3OH2+ is analyzed by density functional theory (DFT) calculations, providing detailed insight into the nature of the dative H3Si+‐OH2 bond. Comparison with protonated methanol illustrates the differences in bonding between carbon and silicon, which are mainly related to their different electronegativity and the different energy of the vacant valence pz orbital of SiH3+ and CH3+.  相似文献   
4.
Unlike other variants of transition‐metal‐catalyzed cross‐coupling reactions, those based on organosilicon donors have not been used extensively in natural product synthesis. However, recent advances such as: 1) the development of mild reaction conditions, 2) the expansion of substrate scope, 3) the development of methods to stereoselectively and efficiently introduce the silicon‐containing moiety, 4) the development of a large number of sequential processes, and 5) the advent of bifunctional bis(silyl) linchpin reagents, signify the coming of age of silicon‐based cross‐coupling reactions. The following case studies illustrate how silicon‐based cross‐coupling reactions play a strategic role in constructing carbon–carbon bonds in selected target molecules.  相似文献   
5.
Summary A series of synthetic peptide HPLC standards has been designed for use in monitoring free silanols on silica-based reversed-phase supports. The four standards (+ 1 to + 4 net charge) showed great versatility in monitoring silanol activity over a pH range of 2.0 to 7.0. We have developed a silanol monitoring system based on the sensitivity of the standards to ionic interactions with reversed-phase packings at pH 7.0. This monitoring procedure involves chromatographing the peptides at pH 7.0 with a combined acetonitrile and sodium perchlorate linear AB gradient and is generally applicable to reversed-phase packings exhibiting a wide range of silanol concentrations. These standards not only demonstrate the presence and extent of free silanols, they also allow the researcher to determine what changes must be made to the mobile phase composition to minimize ionic interactions. In addition, the standards, in conjunction with the double gradient monitoring system at pH 7.0, will aid researchers and manufacturers in the improvement and development of reversed-phase matrices.  相似文献   
6.
Abstract

Elution fractions relative to solid phase extraction (SPE) procedures using C-18 bonded silica and Carbopack B columns plus C-18 membranes have been analyzed by gas chromatography-mass spectrometry (GC-MS) for the characterization of interfering compounds from the phases. Alkanes, alkenes, phthalates and some silyl compounds (silanols, siloxanes) have been tentatively identified. Experiments on commercial C-18 phases prepacked in plastic tubes show that the increased interference compared to the phases alone comes from the polymer container. N-butylbenzensulfonamide (NBBSA) was identified as causing interference when the extraction device used for SPE involved plastic components. Increasing amounts of silanol interferences released from the C-18 phases were observed after passage of the water sample, depending on the acidic pH, as evidence of the hydrolysis of the bonded silica.  相似文献   
7.
Nests of three silanol groups are located on the internal pore surface of calcined zeolite SSZ‐70. 2D 1H double/triple‐quantum single‐quantum correlation NMR experiments enable a rigorous identification of these silanol triad nests. They reveal a close proximity to the structure directing agent (SDA), that is, N,N′‐diisobutyl imidazolium cations, in the as‐synthesized material, in which the defects are negatively charged (silanol dyad plus one charged SiO? siloxy group) for charge balance. It is inferred that ring strain prevents the condensation of silanol groups upon calcination and removal of the SDA to avoid energetically unfavorable three‐rings. In contrast, tetrad nests, created by boron extraction from B‐SSZ‐70 at various other locations, are not stable and silanol condensation occurs. Infrared spectroscopic investigations of adsorbed pyridine indicate an enhanced acidity of the silanol triads, suggesting important implications in catalysis.  相似文献   
8.
A silicon-stereogenic aminosilanol was isolated in excellent diastereomeric ratio and the absolute configuration was determined. The silanol is configurative and condensation stable in solution and shows stereoselective transformations with a clean stereospecific pathway in follow-up reactions, which leads to the isolation of a silicon-stereogenic zinc complex and siloxane compounds. Investigations with 18O-labelled water and mass spectrometry analysis revealed an otherwise hidden exchange of oxygen atoms of silanol and water in solution that proceeds with retention of the configuration at the silicon center. This novel combination of a stereochemical probe and isotopic labeling in a silicon-stereogenic compound opens new analytic possibilities to study stereochemical courses of reactions with the aid of chiral silanols mechanistically.  相似文献   
9.
Compared to the biological world's rich chemistry for functionalizing carbon, enzymatic transformations of the heavier homologue silicon are rare. We report that a wild-type cytochrome P450 monooxygenase (P450BM3 from Bacillus megaterium, CYP102A1) has promiscuous activity for oxidation of hydrosilanes to give silanols. Directed evolution was applied to enhance this non-native activity and create a highly efficient catalyst for selective silane oxidation under mild conditions with oxygen as the terminal oxidant. The evolved enzyme leaves C−H bonds present in the silane substrates untouched, and this biotransformation does not lead to disiloxane formation, a common problem in silanol syntheses. Computational studies reveal that catalysis proceeds through hydrogen atom abstraction followed by radical rebound, as observed in the native C−H hydroxylation mechanism of the P450 enzyme. This enzymatic silane oxidation extends nature's impressive catalytic repertoire.  相似文献   
10.
Need some direction? Silanol was developed as a directing group for the Pd(II)-catalyzed oxidative Heck-type reaction of arenes. A one-pot C-H activation/desilylation process of benzyldiisopropylsilanol was also demonstrated, providing a powerful approach for the synthesis of ortho-alkenyl-substituted alkylarenes. Considering the easily attachable and readily removable properties of the silanol group, this reaction will find broad synthetic applications.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号