首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4篇
  免费   0篇
化学   4篇
  2004年   1篇
  2002年   1篇
  2000年   2篇
排序方式: 共有4条查询结果,搜索用时 0 毫秒
1
1.
Blends prepared by melt mixing of thermoplastic elastomer have gained considerable attention in recent years from a heat shrinkability point of view. Our present study deals with the measurement of heat shrinkability of the maleic anhydride grafted low‐density polyethylene and ethylene acrylic elastomer. Two samples have been prepared to study the effect of coupling agent's reactivity on the shrinkability of the blends. The coupling agents used are 4,4′‐diamino diphenyl sulphone, and 4,4′‐diamino diphenyl methane. Shrinkability was measured at room temperature, 120 °C, 150 °C, and 180 °C. Shrinkability is found to be greater in high temperature stretched sample rather than that of room temperature stretched sample. It is observed that reactivity as well as heat shrinkability is more when 4,4′‐diamino diphenyl methane is used as a coupling agent. The mechanism of interchain crosslinking reaction has been confirmed by IR spectroscopy. Differential scanning calorimetry was performed to study the thermal stability of the sample. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   
2.
Summary: A low‐density polyethylene (LDPE)/millable polyurethane (PU)/organoclay ternary nanocomposite was successfully prepared. The nanocomposites were characterized by X‐ray diffraction (XRD) and transmission electron microscopy (TEM). The nanocomposites, as evidenced by XRD, are intercalated. The heat shrinkable behavior of the nanocomposites, as well as their pristine counterparts, was studied. It was observed that heat shrinkability decreases with increased filler content. The tensile strength and the tensile modulus of the nanocomposites are higher than their pristine counterparts.

The heat shrinkability of the unfilled LDPE/millable PU blend is highest and it decreases with increased nanofiller content.  相似文献   

3.
The heat shrinkability of electron-beam-irradiated thermoplastic elastomeric films from blends of ethylene–vinylacetate copolymer (EVA) and low-density polyethylene (LDPE) has been investigated in this paper. The effects of temperature, time and extent of stretching and shrinkage temperature and time have been reported. Based on the above data, the optimized conditions in terms of high heat shrinkage and low amnesia rating have been evaluated. Influence of radiation doses (0–500 kGy), multifunctional sensitizer levels (ditrimethylol propane tetraacrylate, DTMPTA), and blend proportions on heat shrinkability has been explained with the help of gel fraction and X-ray data. With the increase in radiation dose, gel fraction increases, which in turn gives rise to low values of heat shrinkage and amnesia rating. At a constant radiation dose and blend ratio, percent heat shrinkage is found to decrease with increase in DTMPTA level. Gel content increases with the increase in EVA content of the blend at a constant radiation dose and monomer level, giving rise to decrease in heat shrinkability. Heat shrinkage increases with the increase in percent crystallinity, although the amnesia rating follows the reverse trend.  相似文献   
4.
Heat shrinkability of the polymer, which depends on the elastic memory, is being utilized in various applications, mainly in the field of encapsulation. The elastic memory is introduced into the system in the form of an elastomeric phase. Here the blends of ethylene vinyl acetate and polyurethane were studied with reference to their shrinkability, introducing crosslinking in both the phases. It is found that with increase in elastomer content the shrinkage increased to a certain level and then decreased. With increase in cure time shrinkage is decreased. It is seen that high‐temperature (HT) stretched samples showed higher shrinkage than room temperature (RT) stretched one. Generally, the crystallinity of the HT stretched sample is higher than that of low‐temperature stretched sample, which is again higher than that of original sample. From high temperature differential scanning calorimetry it is found that with increase in PU content stability towards oxygen is increased and further high temperature processing decreases the initial degradation temperature but enhances the rate of degradation. From scanning electron microscopy it is seen that an HT stretched sample is more elongated than an RT stretched one. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号