首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   10篇
  免费   0篇
化学   10篇
  2022年   2篇
  2021年   3篇
  2019年   2篇
  2018年   1篇
  2016年   1篇
  2012年   1篇
排序方式: 共有10条查询结果,搜索用时 31 毫秒
1
1.
A new dimeric secoiridoids derivative, named japonicaside E, together with six known compounds were isolated from the flower buds of Lonicera japonica. The structures of these compounds were elucidated by the analyses of mass spectrometry and NMR spectroscopy. All compounds were evaluated for anti-inflammatory activity in vitro.  相似文献   
2.
This paper reports on the first phytochemical analysis ever performed on Jasminum tortuosum Willd. This analysis, mainly carried out by means of column chromatography separation, NMR spectroscopy and mass spectrometry, led to the isolation and the identification of four compounds, namely the lignans ginkgool (1) and olivil-4′-O-β-glucopyranoside (2) and the secoiridoids oleoside dimethyl ester (3) and oleoside 11-methyl ester (4). The presence of these compounds is significant from a chemotaxonomic point of view, confirming the correct botanical classification of the species and, from a phytochemical standpoint, may suggest its possible use in the ethno-medicinal field.  相似文献   
3.
A systematic structural characterization of the isomeric forms related to ligstroside aglycone (LA), one of the most relevant secoiridoids contained in virgin olive oils, was performed using reverse phase liquid chromatography with electrospray ionization Fourier‐transform single and tandem mass spectrometry, operated in negative ion mode (RPLC‐ESI(?)‐FTMS and FTMS/MS). The high mass resolution and accuracy provided by the adopted orbital trap mass analyzer enabled the recognition of more than 10 different isomeric forms of LA in virgin olive oil extracts. They were related to four different types of molecular structure, two of which including a dihydropyranic ring bearing one or two aldehydic groups, whereas the others corresponded to dialdehydic open‐structure forms, differing just for the position of a C═C bond. The contemporary presence of enolic or dienolic tautomers associated to most of these compounds, stable at room temperature (23°C), was also assessed through RPLC‐ESI‐FTMS analyses operated under H/D exchange conditions, ie, by using D2O instead of H2O as co‐solvent of acetonitrile in the RPLC mobile phase. As discussed in the paper, the results obtained for LA indicated a remarkable structural similarity with oleuropein aglycone (OA), the most abundant secoiridoid of olive oil, whose isoforms had been previously characterized using the same analytical approach.  相似文献   
4.
Many studies demonstrated that olive oil (especially extra virgin olive oil: EVOO) phenolic compounds are bioactive molecules with anti-cancer, anti-inflammatory, anti-aging and neuroprotective activities. These effects have been recently attributed to the ability of these compounds to induce epigenetics modifications such as miRNAs expression, DNA methylation and histone modifications. In this study, we systematically review and discuss, following the PRISMA statements, the epigenetic modifications induced by EVOO and its phenols in different experimental systems. At the end of literature search through “PubMed”, “Web of Science” and “Scopus”, 43 studies were selected.Among them, 22 studies reported data on miRNAs, 15 on DNA methylation and 13 on histone modification. Most of the “epigenomic” changes observed in response to olive oil phenols’ exposure were mechanistically associated with the cancer preventive and anti-inflammatory effects. In many cases, the epigenetics effects regarding the DNA methylation were demonstrated for olive oil but without any indication regarding the presence or not of phenols. Overall, the findings of the present systematic review may have important implications for understanding the epigenetic mechanisms behind the health effects of olive oil. However, generally no direct evidence was provided for the causal relationships between epigenetics modification and EVOO health related effects. Further studies are necessary to demonstrate the real physiological consequences of the epigenetics modification induced by EVOO and its phenolic compounds.  相似文献   
5.
Olives (Olea europaea L.) are a significant part of the agroindustry in China. Olive leaves, the most abundant by-products of the olive and olive oil industry, contain bioactive compounds that are beneficial to human health. The purpose of this study was to evaluate the phytochemical profiles and antioxidant capacities of olive leaves from 32 cultivars grown in China. A total of 32 phytochemical compounds were identified using high-performance liquid chromatography–electrospray ionization–tandem mass spectrometry, including 17 flavonoids, five iridoids, two hydroxycinnamic acids, six triterpenic acids, one simple phenol, and one coumarin. Specifically, olive leaves were found to be excellent sources of flavonoids (4.92–18.29 mg/g dw), iridoids (5.75–33.73 mg/g dw), and triterpenic acids (15.72–35.75 mg/g dw), and considerable variations in phytochemical content were detected among the different cultivars. All tested cultivars were classified into three categories according to their oil contents for further comparative phytochemicals assessment. Principal component analysis indicated that the investigated olive cultivars could be distinguished based upon their phytochemical profiles and antioxidant capacities. The olive leaves obtained from the low-oil-content (<16%) cultivars exhibited higher levels of glycosylated flavonoids and iridoids, while those obtained from high-oil-content (>20%) cultivars contained mainly triterpenic acids in their compositions. Correspondingly, the low-oil-content cultivars (OL3, Frantoio selection and OL14, Huaou 5) exhibited the highest ABTS antioxidant activities (758.01 ± 16.54 and 710.64 ± 14.58 mg TE/g dw, respectively), and OL9 (Olea europaea subsp. Cuspidata isolate Yunnan) and OL3 exhibited the highest ferric reducing/antioxidant power assay values (1228.29 ± 23.95 mg TE/g dw and 1099.99 ± 14.30 mg TE/g dw, respectively). The results from this study may be beneficial to the comprehensive evaluation and utilization of bioactive compounds in olive leaves.  相似文献   
6.
The phenolic composition of heartwood extracts from Fraxinus excelsior L. and F. americana L., both before and after toasting in cooperage, was studied using LC‐DAD/ESI‐MS/MS. Low‐molecular weight (LMW) phenolic compounds, secoiridoids, phenylethanoid glycosides, dilignols and oligolignols compounds were detected, and 48 were identified, or tentatively characterized, on the basis of their retention time, UV/Vis and MS spectra, and MS fragmentation patterns. Some LMW phenolic compounds like protocatechuic acid and aldehyde, hydroxytyrosol and tyrosol, were unlike to those for oak wood, while ellagic and gallic acid were not found. The toasting of wood resulted in a progressive increase in lignin degradation products with regard to toasting intensity. The levels of some of these compounds in medium‐toasted ash woods were much higher than those normally detected in toasted oak, highlighting vanillin levels, thus a more pronounced vanilla character can be expected when using toasted ash wood in the aging wines. Moreover, in seasoned wood, we found a great variety of phenolic compounds which had not been found in oak wood, especially oleuropein, ligstroside and olivil, along with verbascoside and isoverbascoside in F. excelsior, and oleoside in F. americana. Toasting mainly provoked their degradation, thus in medium‐toasted wood, only four of them were detected. This resulted in a minor differentiation between toasted ash and oak woods. The absence of tannins in ash wood, which are very important in oak wood, is another peculiar characteristic that should be taken into account when considering its use in cooperage. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   
7.
Syringa vulgaris L. (common lilac) is one of the most popular ornamental species, but also a promising not comprehensively studied source of bioactive compounds with important therapeutic potential. Our study was designed to characterize the chemical composition and to assess the antioxidant and cytotoxic properties of ethanolic extracts obtained from S. vulgaris L. flowers, leaves, bark, and fruit. The chemical profile of the ethanolic extracts was investigated using chromatographic (HPLC-DAD-ESI+, GC-MS) and spectral (UV-Vis, FT-IR) methods, while the protective effect against free radicals was evaluated in vitro by different chemical assays (DPPH, FRAP, CUPRAC). The cytotoxic activity was tested on two tumoral cell lines, HeLa, B16F10, using the MTT assay. Significant amounts of free or glycosylated chemical components belonging to various therapeutically important structural classes, such as phenyl-propanoids (syringin, acteoside, echinacoside), flavonoids (quercetin, kaempferol derivatives) and secoiridoids (secologanoside, oleuropein, 10-hydroxy oleuropein, demethyloleuropein, syringalactone A, nuzhenide, lingstroside) were obtained for the flowers, leaves and bark extracts, respectively. Furthermore, MTT tests pointed out a significant cytotoxic potential expressed in a non-dose-dependent manner toward the tumoral lines. The performed methods underlined that S. vulgaris extracts, in particular belonging to flowers and leaves, represent valuable sources of compounds with antioxidant and antitumoral potential.  相似文献   
8.
We compared the respective metabolite patterns of two Pedicularis species from Dolomites. Seven phenylethanoid glycosides, i.e., verbascoside (1), echinacoside (2), angoroside A (3), cistantubuloside B1 (4), wiedemannioside C (5), campneoside II (11) and cistantubuloside C1 (12), together with several iridoid glucosides as aucubin (6), euphroside (7), monomelittoside (8), mussaenosidic acid (9) and 8-epiloganic acid (13) were identified. Pedicularis verticillata showed also the presence of greatly unexpected secoiridoids, ligustroside (14) and excelside B (15), very rare compounds in Lamiales. Both PhGs and iridoids are considered of taxonomical relevance in the Asteridae and their occurrence in Pedicularis was discussed. In particular, the exclusive presence of several compounds such as 8-epiloganic acid (13), campneoside II (11), cistantubuloside C1 (12), ligustroside (14) and excelside B (15) in Pedicularis rostratocapitata, and angoroside A (3), cistantubuloside B1 (4) and wiedemannioside C (5) in P. verticillata could be considered specific markers for the two botanical entities.  相似文献   
9.
Extra virgin olive oil (EVOO) is recognized for its nutritional virtues and the beneficial health effects deriving from its hydrophilic fraction (phenolic acids, phenolic alcohols, flavonoids, and secoiridoids). The phenolic compounds of EVOOs possess multiple biological properties such as antioxidant, antimicrobial, anticarcinogenic, and anti-inflammatory properties, among others. Considering that EVOOs produced in Greece are recognized as high-quality products due to their rich phenolic content, it is imperative to characterize Greek monovarietal EVOOs and ensure that their uniqueness is closely linked to their botanical and territorial origin. In this work, an ultra-high-performance liquid chromatography–quadrupole time-of-flight tandem mass spectrometry (UHPLC-QTOF-MS) analytical method combined with target and suspect screening was used to characterize monovarietal EVOOs of the Kolovi variety from Lesvos, and thereby establish their phenolic fingerprint. Overall, 25 phenols were determined, and the total quantification and semi-quantification results ranged between 251 and 1230 mg/kg, highlighting the high phenolic content of the Kolovi variety from the island of Lesvos in the North Aegean.  相似文献   
10.
Nowadays, many individuals, whether healthy or diagnosed with disease, tend to expose themselves to various easily accessible natural products in hopes of benefiting their health and well-being. Mediterranean populations have traditionally used olive oil not only in nutrition but also in cosmetics, including skincare. In this study, the phenolic profile—composed of twelve compounds altogether, including the secoiridoids oleocanthal (OCAL) and oleacein (OCEIN)—of extra virgin olive oil (EVOO) from autochthonous cultivars from Croatia was determined using 1H qNMR spectroscopy and HPLC-DAD analysis, and its biological activity was investigated in melanoma cell lines. The EVOO with the highest OCEIN content had the strongest anti-cancer activity in A375 melanoma cells and the least toxic effect on the non-cancerous keratocyte cell line (HaCaT). On the other hand, pure OCAL was shown to be more effective and safer than pure OCEIN. Post-treatment with any of the EVOO phenolic extracts (EVOO-PEs) enhanced the anti-cancer effect of the anti-cancerous drug dacarbazine (DTIC) applied in pre-treatment, while they did not compromise the viability of non-cancerous cells. The metastatic melanoma A375M cell line was almost unresponsive to the EVOO-PEs themselves, as well as to pure OCEIN and OCAL. Our results demonstrate that olive oils and/or their compounds may have a potentially beneficial effect on melanoma treatment. However, their usage can be detrimental or futile, especially in healthy cells, due to inadequately applied concentrations/combinations or the presence of resistant cells.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号