A two-step hysteretic FeII spin crossover (SCO) effect was achieved in programmed layered Cs{[Fe(3-CNpy)2][Re(CN)8]}⋅H2O ( 1 ) (3-CNpy=3-cyanopyridine) assembly consisting of cyanido-bridged FeII-ReV square grid sheets bonded by Cs+ ions. The presence of two non-equivalent FeII sites and the conjunction of 2D bimetallic coordination network with non-covalent interlayer interactions involving Cs+, [ReV(CN)8]3− ions, and 3-CNpy ligands, leads to the occurrence of two steps of thermal SCO with strong cooperativity giving a double thermal hysteresis loop. The resulting spin-transition phenomenon could be tuned by an external pressure giving the room-temperature range of SCO, as well as by visible-light irradiation, inducing an efficient recovery of the high-spin FeII state at low temperatures. We prove that octacyanidorhenate(V) ion is an outstanding metalloligand for induction of a cooperative multistep, multiswitchable FeII SCO effect. 相似文献
[Rb2(H2O)2][Re3(μ-Cl)3Br7(H2O)2]2 · H2O, a Mixed Halide-Hydrate with the Anionic Dimer {[Re3(μ-Cl)3Br7(H2O)2]2 · H2O}2? [Rb2(H2O)2][Re3(μ-Cl)3Br7(H2O)2]2 · H2O crystallizes as dark redbrown single crystals from an hydrobromic-acid solution of ReCl3 and RbBr at 0°C. An important feature of the crystal structure (monoclinic, C2/c; a = 1494.61(8); b = 835.71(4); c = 3079.96(19) pm; β = 97.801(4)°; Vm = 573.9(4) cm3mol?1; R = 0.060; Rw = 0.038) is the connection of two anions [Re3(μ-Cl)3Br7(H2O)2]? via a water molecule to dimers, {[Re3(μ-Cl)3Br7(H2O)2]2 · H2O}2?. These dimeric units are contained in slabs that are stacked in the [001] direction and held together by Rb+ cations and crystal water. 相似文献
Methyl(oxo)bis(η2-peroxo)rhenium(VII)1, the active species of the system CH3ReO3/H2O2 in the catalytic oxidation of different organic and organometallic compounds, is stabilized by a water molecule attached to the rhenium center. This water molecule can be removed and substituted by hexamethylphosphoramide (HMPA) to yield (hexamethylphosphoramide)methyl(oxo)bis(η2-peroxo rhenium(VII) (3). The synthesis, crystal structure (X-ray difraction study), and catalytic properties of which compound are reported. Crystal data are as follows: monoclinic, space group P21/n, A = 900.76(7) pm, B = 1229.80(11) pm, C = 1318.57(11) pm, β = 90.251(7)°, Rw = 0.034 for 1878 reflections. The catalytic properties of compound 3 in the oxidation of olefins with H2O2 are similar to those of 1. 相似文献
Reduction of CO2 to CO and H2O is a two electron/two proton process. For this process, multinuclear complexes offer advantages by concentrating reduction equivalents more efficiently than mononuclear systems. We present novel complexes with [Re(η6-C6H6)2]+ as scaffold conjugated to one or two catalytically active [Ru(dmbpy)(CO)2Cl2] subunits (dmbpy=5,5′-dimethyl-2,2′-bipyridine). The [Re(η6-C6H6)2]+ scaffold was chosen due to its very high photo- and chemical stability, as well as the multiple degrees of freedom it offers for any conjugated functionalities. High efficiency and selectivity for the reduction of CO2 to CO (over H2 or HCOOH) is reported. TONs and TOFs were found to be comparable or higher than for the catalyst subunit without the rhenium framework. Cooperativity in photo- and electrocatalysis is observed for the complex comprising two catalytic subunits. The synergistic communication between the two catalytic subunits is responsible for the observed enhancement in both photo- and electrocatalytic performance. Confirmation of electronic communication between the two [Ru(dmbpy)(CO)2Cl2] subunits as well as the elucidation of a possible mechanism was supported by electrochemistry, IR-spectroelectrochemistry and DFT studies. 相似文献
New antibiotics and innovative approaches to kill drug-resistant bacteria are urgently needed. Metal complexes offer access to alternative modes of action but have only sparingly been investigated in antibacterial drug discovery. We have developed a light-activated rhenium complex with activity against drug-resistant S. aureus and E. coli. The activity profile against mutant strains combined with assessments of cellular uptake and synergy suggest two distinct modes of action. 相似文献
The two independent and coordination sites of a newly synthesized bis[2-(hydroxyphenyl)-1,2,4-triazole] platform have been exploited to prepare four monometallic neutral ()PtII complexes carrying DMSO, pyridine, triphenylphosphine, or N-heterocyclic carbene as the fourth ligand. Then, the second coordination site was used to introduce an IR-active rhenium tricarbonyl entity, affording the four corresponding heterobimetallic neutral PtII/ReI complexes, as well as a cationic PtII/ReI derivative. X-ray crystallographic studies showed that distortion of the organic platform occurred to accommodate the coordination geometry of both metal centers. No ligand exchange or transchelation occurred upon incubation of the PtII complexes in aqueous environment or in the presence of FeIII, respectively. The antiproliferative activity of the ligand and complexes was first screened on the triple-negative breast cancer cell line MDA-MB-231. Then, the IC50 values of the most active candidates were determined on a wider panel of human cancer cells (MDA-MB-231, MCF-7, and A2780), as well as on a nontumorigenic cell line (MCF-10A). Low micromolar activities were reached for the complexes carrying a DMSO ligand, making them the first examples of highly active, but hydrolytically stable, PtII complexes. Finally, the characteristic mid-IR signature of the {Re(CO)3} fragment in the Pt/Re heterobimetallic complexes was used to quantify their uptake in breast cancer cells. 相似文献
Rhenium does the job! A readily available rhenium complex efficiently catalyzed the direct Meyer–Schuster‐like rearrangement of different alkyl‐ and aryl‐substituted propargylic secondary and tertiary alcohols to the corresponding α,β‐unsaturated compounds, which were produced with virtually complete E stereoselectivity. The reaction proceeded under neutral conditions and no racemization of potentially enolizable stereocenters was observed.
Self‐assembled, hexarhenium(I), triangular metalloprism compound [{(CO)3Re(μ‐ 2 )Re(CO)3}3(μ3‐ 1 )2] ( 3 ) featuring three bis‐chelating pillarlike indigo dianions (μ‐ 2 ), each of which connects two fac‐Re(CO)3 cores, which are interconnected by a tritopic N donor, that is, a 2,4,6‐tris(4‐pyridyl)‐1,3,5‐triazine (μ3‐ 1 , tPyTz) ligand, has been synthesized in high yield and characterized. Metalloprism 3 exhibits a strong absorption in the near‐infrared (NIR) region. The reversible, multielectron redox properties of the electrogenerated 3 n species, where n=3+, 0, 3?, 4?, 5?, 8?, in the visible and especially in the NIR region were investigated in THF solution by cyclic voltammetry (CV), chronocoulometry, EPR spectroscopy, and thin‐layer UV/Vis/NIR spectroelectrochemistry (SEC). Stepwise, site‐specific electrochemical reductions lead to the formation of a series of highly stable ion (radical) species in which electrons associated with μ‐ 2 or μ3‐ 1 components of the molecule can be clearly distinguished. An EPR investigation revealed interaction of unpaired electrons with the metal nuclei (185,187Re, I=5/2) in the reduced intermediates. The framework has C2 symmetry, and accidental degeneracies suffice. Detailed theoretical calculations by structure‐based DFT confirm that the triply degenerate HOMO has ≥70 % indigo character with a sizable dπ‐Re character, while the LUMO is dominated by the triply degenerate indigo ligands, and the LUMO+1 by doubly degenerate tPyTz ligands. A comparison of 3 and previously reported 2,2′‐bis‐benzimidazolate‐ (BiBzlm) or alkoxy‐pillared ReI metalloprisms indicates a very low switching potential with a potential window of less than 1 V and reversibly accessible optical properties with higher stability of the intermediates. The properties exhibited by 3 appear to be due to the slight tuning of the bridging ligand from N,N? to N,O?. 相似文献