首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   75篇
  免费   7篇
  国内免费   4篇
化学   75篇
力学   5篇
综合类   2篇
数学   3篇
物理学   1篇
  2022年   1篇
  2021年   1篇
  2020年   9篇
  2019年   8篇
  2018年   8篇
  2017年   6篇
  2016年   5篇
  2015年   3篇
  2014年   6篇
  2013年   16篇
  2012年   3篇
  2011年   4篇
  2010年   3篇
  2009年   2篇
  2008年   2篇
  2007年   2篇
  2005年   1篇
  2003年   1篇
  2000年   2篇
  1999年   1篇
  1996年   1篇
  1957年   1篇
排序方式: 共有86条查询结果,搜索用时 359 毫秒
1.
In this research, a rapid, green and efficient protocol for synthesis of bis (pyrazolyl)methane derivatives in the presence of Pd(0)-guanidine@MCM-41 catalysts under solvent-free conditions by the following two methods has been reported: (i) via the one-pot pseudo five-component reaction among phenylhydrazine (2 equivalents), ethyl acetoacetate (2 equivalents) and aromatic aldehydes (1 equivalent); and (ii) the one-pot pseudo three-component reaction between 3-methyl-1-phenyl-1H-pyrazol-5(4H)-one (2 equivalents) and aromatic aldehydes (1 equivalent). Some advantages of this protocol include: green conditions, extremely short times, high efficiency, proper one-pot operation, generality of method, easy work-up and recyclability, and reusability of the catalyst up to five times without significant loss in catalytic activity.  相似文献   
2.
HZSM‐5‐supported Brönsted and Lewis acidic ionic solid 1,3‐disulfoimidazolium chlorozincate materials ([dsim]2[ZnCl4]@HZSM‐5) were synthesized with various ratios (3, 6, 9, 17 and 50% w/w). The heterogeneous materials were characterized via a variety of spectroscopic techniques. Dual acidity of these materials was determined using specified techniques. These acidic solids were examined as stable heterogeneous catalysts for the Fischer indole reaction of equimolar amounts of phenylhydrazine hydrochloride and various aliphatic or aromatic ketones at 80–90°C in neat condition to produce substituted indole derivatives. The efficient 17% ionic salt‐loaded HZSM‐5 composite was easily reused for ten consecutive cycles with a slight loss of its activity. The recycled catalyst was further analysed using powder X‐ray diffraction and inductively coupled plasma optical emission spectrometric techniques.  相似文献   
3.
Poly(N‐isopropylacrylamide)–halloysite (PNIPAM‐HNT) nanocomposites exhibited inverse temperature solubility with a lower critical solution temperature (LCST) in water. Palladium (Pd) nanoparticles were anchored on PNIPAM‐HNT nanocomposites with various amounts of HNT from 5 to 30 wt%. These Pd catalysts exhibited excellent reactivities for Suzuki–Miyaura coupling reactions at 50–70 °C in water. In particular, Pd anchored PNIPAM/HNT (95:5 w/w ratio) nanocomposites showed excellent recyclability up to 10 times in 96% average yield by simple filtration. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   
4.
5.
ABSTRACT

A novel mesoporous Al-SBA-15 modified by N,N'-(1,2-phenylene)bis(2-aminobenzamide) dichloro cobalt has been prepared and applied as a reusable catalyst in the 3-cinnamoyl coumarins synthesis via three-component reaction between benzaldehydes, salicylaldehydes and ethyl acetoacetate by the assist of ultrasonic irradiation. By using of the nanocatalyst and also ultrasound irradiation, the easiness and velocity of the abovementioned reaction were enhanced and an environment friendly condition was provided to synthesis of various 3-cinnamoyl coumarin compounds. The properties and structure of nanocatalyst have been specified by methods including powder X-ray diffraction (XRD), energy dispersive spectroscopy (EDS), Fourier transform infrared spectroscopy (FT-IR), transmission electron microscopy (TEM), nitrogen adsorption–desorption analysis and scanning electronic microscopy (SEM). Superiority of this novel and viable method is due to mild reaction condition, short reaction times, high yields of 3-cinnamoyl coumarins, environmentally benign, recoverability of the CoCl2N,N'-(1,2-phenylene)bis(2-aminobenzamide)/Al-SBA-15 catalyst and reusability with important preservation in its catalytic activity.  相似文献   
6.
The development of a user-friendly reusable laboratory equipment for the delivery of sensitive reagents and catalysts is described. The tightness of these Teflon Magnetic Stirring Capsules (TMSC) is ensured by the magnetic force and release of the reagent inside the solution is triggered by adjusting the stirring rate so that the centrifuge force exceeds the magnetic force. They can be loaded with several chemicals at the same time and do operate across a broad range of temperatures. The inertness of Teflon facilitates reaction purification.  相似文献   
7.
A reusable CuSO4 · 5H2O/cationic 2,2′‐bipyridyl system catalyzed the homocoupling reaction of terminal alkynes in water using I2 as the additive in the presence or absence of tetrabutylammonium bromide, giving the 1,3‐diynes in good to high yields. After reaction, the residual aqueous solution could be reused several times. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   
8.
Series of metal organic frameworks from nitrogen based ligand were synthesized as efficient and reusable catalyst via mixed linker methods. The thermogravimetric study of the mixed linker metal organic framework (MIXMOF) reveals that the complexes are potential thermally stable materials. The palladium supported catalysts exhibits high catalytic activity toward the Suzuki-Miyaura cross coupling reaction and can be reused several times without any visible loss of activity even after five consecutive times.  相似文献   
9.
In this work, trisaminomethane–cobalt complex immobilized onto the surface of Fe3O4 magnetic nanoparticles was successfully prepared via a simple and inexpensive procedure. The prepared nanocatalyst was considered a robust and clean nanoreactor catalyst for the oxidation and synthesis of sulfides under green conditions. This ecofriendly heterogeneous catalyst was characterized by Fourier transform infrared spectroscopy, X-ray diffractometry, energy-dispersive X-ray spectroscopy, inductively coupled plasma-atomic emission spectroscopy, thermogravimetric analysis, vibrating sample magnetometry, X-ray mapping, scanning electron microscopy, and transmission electron microscopy techniques. Use of green medium, easy separation and workup, excellent reusability of the nanocatalyst, and short reaction time are some outstanding advantages of this method.  相似文献   
10.
The use of dimedone in green chemistry has been described for the synthesis of selective heterocyclic motifs which are both pharmacologically and industrially important. The objective of this review is to summarize some of the selected recent advances of dimedone in the synthesis of organic compounds utilizing green chemistry procedures.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号