首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   190篇
  免费   24篇
  国内免费   12篇
化学   135篇
晶体学   2篇
力学   1篇
综合类   1篇
数学   38篇
物理学   49篇
  2023年   7篇
  2022年   4篇
  2021年   11篇
  2020年   5篇
  2019年   10篇
  2018年   11篇
  2017年   8篇
  2016年   11篇
  2015年   12篇
  2014年   9篇
  2013年   17篇
  2012年   2篇
  2011年   8篇
  2010年   8篇
  2009年   7篇
  2008年   7篇
  2007年   11篇
  2006年   9篇
  2005年   7篇
  2004年   3篇
  2003年   8篇
  2002年   4篇
  2001年   6篇
  2000年   8篇
  1999年   4篇
  1998年   7篇
  1997年   1篇
  1996年   5篇
  1995年   1篇
  1994年   3篇
  1991年   4篇
  1988年   2篇
  1986年   1篇
  1983年   1篇
  1982年   1篇
  1981年   1篇
  1977年   1篇
  1967年   1篇
排序方式: 共有226条查询结果,搜索用时 46 毫秒
1.
Excitation energies of 123 polycyclic aromatic hydrocarbons were calculated by incorporating the improved method of new-γ for the two-center electron repulsion integral into two semiempirical molecular orbital methods (CNDO/S and INDO/S). This variable method well reproduced experimental excitation energies of them. The average error of the improvement is about 0.162 (CNDO/S) or 0.237 eV (INDO/S) though the average error without the improvement is about 0.541 (CNDO/S) or 0.536 eV (INDO/S). The improvement was useful for the calculations of other organic compounds including hetero atoms, such as organic dye.  相似文献   
2.
The transition state of addition of free radicals and atoms to multiple bonds is considered as a result of intersecting of two parabolic potential curves. One of them characterizes the stretching vibration of the attacked multiple bond, and another curve characterizes the stretching vibration of the bond formed in the transition state. The force constant of the latter is calculated by an empirical equation that correlates the force constant with the bond dissociation energy. In the framework of this model, the thermally neutral activation energy (E e0) and the elongation of the attacked and formed bonds (r e) in the transition state were calculated from the experimental data (activation energy (E e) and enthalpy of reaction (H e)) for the addition of an H atom and methyl, alkoxyl, aminyl, triethylsilyl, and peroxyl radicals to the C=C bond and the addition of H and CH3 to the C=O and CC bonds. Analysis of the data obtained showed that E e0 depends linearly on the |H e| + Ee sum, i.e., Ee0/kJ mol–1 = 14.2 + 0.61 · (EeH e), and the bond elongation in the transition state for addition of the most part of radicals to ethylene and acetylene vary within (0.65–0.87)·10–10 m. The factors affecting the activation energy of the radical addition reactions are discussed.Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 8, pp. 1542–August, 2004.  相似文献   
3.
The polarizability of a water molecule in liquid is evaluated via ab initio and density functional calculations for water clusters. This work has considerably improved our previous effort [J Chem Phys 1999, 110, 11987] to attain quantitative accuracy for polarizability. The calculations revealed that the water polarizability in the liquid is reduced from that in the gaseous phase by 7-9%. These results suggest significant implications for polarizable water models.  相似文献   
4.
The solvation parameter model is used to elucidate the retention mechanism on a perfluorohexylpropylsiloxane-bonded (Fluophase RP) and octadecylsiloxane-bonded (Betasil C18) stationary phases based on the same silica substrate with acetonitrile–water and methanol–water mobile phase compositions. Dewetting affects the retention properties of Fluophase RP at mobile phase compositions containing less than 20% (v/v) acetonitrile or 40% (v/v) methanol. It results in a loss of retention due to an unfavorable change in the phase ratio as well as changes in specific intermolecular interactions. Steric repulsion reduces retention of bulky solutes on fully solvated Betasil C18 with methanol–water (but not acetonitrile–water) mobile phase compositions but is not important for Fluophase RP. The retention of weak bases is affected by ion-exchange interactions on Fluophase RP with acetonitrile–water, and to a lesser extent, methanol-water mobile phases but these are weak at best for Betasil C18. The system constants of the solvation parameter model and retention factor scatter plots are used to compare selectivity differences for Fluophase RP, Betasil C18 and a perfluorophenylpropylsiloxane-bonded silica stationary phase Discovery HS F5 for conditions where incomplete solvation, steric repulsion and ion-exchange do not significantly contribute to the retention mechanism. Lower retention on Fluophase RP results from weaker dispersion and/or higher cohesion moderated to different extents by polar interactions since solvated Fluophase RP is a stronger hydrogen-bond acid and more dipolar/polarizable than Betasil C18. Retention factors for acetonitrile–water mobile phases are highly correlated for Fluophase RP and Betasil C18 except for compounds with a large excess molar refraction and weak hydrogen-bonding capability. Selectivity differences are more significant for methanol–water mobile phases. Retention factors on Fluophase RP are strongly correlated with those on Discovery HSF5 for acetonitrile–water mobile phases while methanol–water mobile phases retention on Fluophase RP is a poor predictor of the retention order on Discovery HS F5.  相似文献   
5.
Summary A simple and general scheme to exploit any discrete point group symmetry in two-electron integral transformations is introduced. It has been implemented together with integral pre-screening techniques in direct two-electron integral transformations. Its application has also been extended to subsequent MO integral processing steps like MP2 or solution of the coupled-perturbed Hartree-Fock equations (CPHF). Timings for representative applications are presented.  相似文献   
6.
We propose a numerical procedure for the calculation of the electrostatic repulsion force between two identical, parallel surfaces immersed in anab electrolyte solution. These surfaces are coated with an ion-penetrable membrane carrying fixed charges. The amount of fixed charges is governed by the dissociation of the functional groups in the membrane phase. The effect of pH on the degree of dissociation of these functional groups is taken into account. The difficulty of extensive use of Jacobi elliptic function in the numerical treatment of Poisson-Boltzmann equation can be circumvented by resorting to the present algorithm.  相似文献   
7.
We study the effect of hard-core repulsion (known as the bus effect) betweenB particles on the reaction-diffusion systemA+BB in the continuous-time random walk model in one dimension with theA particles stationary. We show rigorously that the survival probability of theA particles is asymptotically bounded asC 1lim t{[–logS(t)]/t 0.5}C 2, whereC 1 andC 2 are constants. We also do simulations to confirm our results.  相似文献   
8.
A self-consistent formalism is proposed for the two-center electron repulsion integrals in the NDDO approximation, based on their expansion in terms of multipole-multipole interactions and free from adjustable parameters.  相似文献   
9.
Interatomic distances in the reaction centers of the addition reactions of (i) H· to the C=C, C=O, N≡C, and C≡C bonds, (ii) ·CH3 radical to the C=C, C=O, and C≡C bonds, and (iii) alkyl, aminyl, and alkoxyl radicals to olefin C=C bonds were determined using a new semiempirical method for calculating transition-state geometries of radical reactions. For all reactions of the type X· + Y=Z → X— Y—Z· the r # X...Y distance in the transition state is a linear function of the enthalpy of reaction. Parameters of this dependence were determined for seventeen classes of radical addition reactions. The bond elongation, Δr # X...Y, in the transition state decreases as the triplet repulsion, electronegativity difference between the atoms X and Y in the reaction center, and the force constant of the attacked multiple bond increase. __________ Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 4, pp. 894–902, April, 2005.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号