首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4篇
  免费   0篇
化学   4篇
  2024年   1篇
  2020年   1篇
  2017年   1篇
  2005年   1篇
排序方式: 共有4条查询结果,搜索用时 0 毫秒
1
1.
Novel main‐chain liquid crystalline Diels—Alder dynamic networks (LCDANs) were prepared that exhibit unprecedented ease for actuator programming and reprocessing compared to existing liquid crystalline network (LCN) systems. Following cooling from 125 °C, LCDANs are deformed with aligned mesogens self‐locked at room temperature by slowly formed Diels–Alder (DA) bonds, which allows for the formation of solid 3D actuators capable of reversible shape change, and strip walker and wheel‐capable light‐driven locomotion upon either thermally or optically induced order–disorder phase transition. Any actuator can readily be erased at 125 °C and reprogrammed into a new one under ambient conditions. Moreover, LCDANs can be processed directly from melt (for example, fiber drawing) and from solution (for example, casting tubular actuators), which cannot be achieved with LCNs using exchangeable covalent bonds. The combined attributes of LCDANs offer significant progress toward developing easily programmable/processable LCN actuators.  相似文献   
2.
Without the use of any curatives, silica filled BIMS compounds can achieve tensile strength and bound rubber level close to conventional crosslinked elastomer compounds. This outstanding tensile performance of silica filled BIMS compounds results from the strong interaction between BIMS polymer and silica filler. Silica filled BIMS compounds can be reprocessed and still retain their high tensile strength performance. The good compatibility between BIMS and silica also leads to better filler dispersion and inhibition of filler-filler interaction. This in turn leads to the lower processing viscosity observed. We speculate that BIMS can interact with silica via nucleophilic substitution reaction between benzylic bromide of the polymer and surface silanol group of silica.  相似文献   
3.
Two kinds of polyurethane elastomers were synthesized. One containing acylhydrazone bonds was named TPIA. The other containing both acylhydrazone and disulfide bonds was named TPID. Self-repairable ability and reprocessability of these two elastomers were studied. The results show that: The polyurethane elastomer TPIA can automatically repair damage to it under acidic conditions. After self-healing for 24 h, the strength and the elongation value at break recovered to 32% and 55% of the originality, respectively. The polyurethane elastomer TPID can automatically repair damage to it under visible light at room temperature. After 24 h of self-healing time, 75% of the original strength and 100% of the original elongation values at break were obtained. These two polyurethane elastomers can be reprocessed in their cured state by just applying temperature and pressure.  相似文献   
4.
A solvent-free approach was developed to incorporate carbon nanotube (CNT) into castor oil derived poly(urethane urea) (PPU) covalent adaptable network (CAN) based on dynamic piperidine-urea bonds to fabricate CNT reinforced PPU composites. The approach includes two steps i.e., pre-polymerization of castor with isophorone diisocyanate in flask and subsequent chain-extension with 1,3-bis(4-piperidinyl)propane (PIP) in the presence of CNT in an internal mixer. The effect on CNT content of the morphology, mechanical property, stress relaxation, and reprocessability of the PPU/CNT composites was investigated in detail. The results demonstrated that CNT dispersed well in the PPU networks due to the applied strong shear force which facilitated the dispersion of CNT in the PPU matrix before cross-linking. The well-dispersed CNT reinforced the mechanical properties of PPU significantly and the Young's modulus (E) of the composites were enhanced significantly when the content of CNT was ≥6 wt% due to the formation of CNT network in the PPU matrix. When the content of CNT was 10 wt%, the E of PPU-10%CNT was 927.59 ± 149.05 MPa, which was improved by ~60% compared to PPU. The reprocessability of the PPU network was remained although the stress relaxation rate was reduced with incorporation and increasing content of CNT. In addition, the PPU/CNT composites could be degraded chemically to recycle CNT through reaction of the dynamic piperidine-urea bonds with additional PIP.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号