首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6篇
  免费   0篇
化学   6篇
  2023年   1篇
  2022年   3篇
  2021年   2篇
排序方式: 共有6条查询结果,搜索用时 31 毫秒
1
1.
2.
Remdesivir (RDV), a phosphoramidate prodrug, has broad-spectrum antiviral activity. It is the first antiviral drug approved by the US Food and Drug Administration (FDA) for the treatment of COVID-19. Remdesivir is rapidly metabolized in the body to produce derivatives: alanine metabolite (RM-442) and RDV C-nucleoside (RN). Here, the phosphatase inhibitor PhosSTOP and carboxylesterase inhibitor 5,5′-dithiobis-2-nitrobenzoic acid were used to improve stability of RDV in mouse blood. We developed a rapid and sensitive LC–MS/MS method to simultaneously quantify RDV, RM-442 and RN in mouse blood. Chromatographic separation was achieved by gradient elution on an Acquity HSS T3 column. The run time was 3.2 min. The linearity ranges of the analytes were 0.5–1,000 ng/ml for RDV and 5–10,000 ng/ml for both RM-442 and RN. The method had an acceptable precision (RSD < 8.4% for RDV, RSD < 10.7% for RM-442 and RSD < 7.2% for RN) and accuracy (91.0–106.3% for RDV, 92.5–98.6% for RM-442 and 87.5–98.4% for RN). This method was successfully applied to analyze RDV, RM-442 and RN in the blood of normal and diabetic nephropathy DBA/2 J mice after intravenous injection of RDV at 20 mg/kg. The area under the concentration–time curve of RN between the normal and diabetic nephropathy mice showed a significant difference (P < 0.01).  相似文献   
3.
The new type of coronavirus, SARS-CoV-2 has affected more than 22.6 million people worldwide. Since the first day the virus was spotted in Wuhan, China, numerous drug design studies have been conducted all over the globe. Most of these studies target the receptor-binding domain of spike protein of SARS-CoV-2, which is known to bind to the human ACE2 receptor and SARS-CoV-2 main protease, vital for the virus’ replication. However, there might be a third target, human furin protease, which cleaves the virus’ S1-S2 domains playing an active role in its entry into the host cell. In this study, we docked five clinically used drug molecules, favipiravir, hydroxychloroquine, remdesivir, lopinavir, and ritonavir onto three target proteins, the receptor-binding domain of SARS-CoV-2 spike protein, SARS-CoV-2 main protease, and human furin protease. Results of molecular docking simulations revealed that human furin protease might be targeted by COVID-19. Remdesivir, a nucleic acid derivative, strongly bound to the active site of this protease, suggesting that this molecule can be used as a template for designing novel furin protease inhibitors to fight against the disease. Protein-drug interactions revealed in this study at the molecular level, can pave the way for better drug design for each specific target.  相似文献   
4.
The role of individual cytochrome P450 (CYPs) responsible for the drug metabolism can be determined through their chemical inhibition. During the pandemic, dexamethasone and remdesivir with omeprazole were used for the treatment of COVID-19, while Ibuprofen was taken to treat the symptoms of fever and headache. This study aimed to examine the potency of ibuprofen remdesivir, and omeprazole as inhibitors of cytochrome P450s using rat liver microsomes in vitro. Dexamethasone a corticosteroid, sometimes used to reduce the body’s immune response in the treatment of COVID-19, was used as a probe substrate and the three inhibitors were added to the incubation system at different concentrations and analysed by a validated High Performance Liquid Chromatography (HPLC) method. The CYP3A2 isoenzyme is responsible for dexamethasone metabolism in vitro. The results showed that ibuprofen acts as a non-competitive inhibitor for CYP3A2 activity with Ki = 224.981 ± 1.854 µM and IC50 = 230.552 ± 2.020 µM, although remdesivir showed a mixed inhibition pattern with a Ki = 22.504 ± 0.008 µM and IC50 = 45.007 ± 0.016 µM. Additionally, omeprazole uncompetitively inhibits dexamethasone metabolism by the CYP3A2 enzyme activity with a Ki = 39.175 ± 0.230 µM and IC50 = 78.351 ± 0.460 µM. These results suggest that the tested inhibitors would not exert a significant effect on the CYP3A2 isoenzyme responsible for the co-administered dexamethasone drug’s metabolism in vivo.  相似文献   
5.
A novel series of 1-aryl-N-[4-phenyl-5-(arylazo)thiazol-2-yl)methanimines has been synthesized via the condensation of 2-amino-4-phenyl-5-arylazothiazole with various aromatic aldehydes. The synthesized imines were characterized by spectroscopic techniques, namely 1H and 13C-NMR, FTIR, MS, and Elemental Analysis. A molecular comparative docking study for 3a–f was calculated, with reference to two approved drugs, Molnupiravir and Remdesivir, using 7BQY (Mpro; PDB code 7BQY; resolution: 1.7 A°) under identical conditions. The binding scores against 7BQY were in the range of −7.7 to −8.7 kcal/mol for 3a–f. The high scores of the compounds indicated an enhanced binding affinity of the molecules to the receptor. This is due to the hydrophobic interactions and multi-hydrogen bonds between 3a–f ligands and the receptor’s active amino acid residues. The main aim of using in silco molecular docking was to rank 3a–f with respect to the approved drugs, Molnupiravir and Remdesivir, using free energy methods as greener pastures. A further interesting comparison presented the laydown of the ligands before and after molecular docking. These results and other supporting statistical analyses suggested that ligands 3a–f deserve further investigation in the context of potential therapeutic agents for COVID-19. Free-cost, PASS, SwissADME, and Way2drug were used in this research paper to determine the possible biological activities and cytotoxicity of 3a–f.  相似文献   
6.
A direct and regioselective lithiation was realized on N-Boc-pyrrolo[2,1-f][1,2,4]triazine, simply utilizing the distinct sigma-acidity on C-9. Starting from this enabling discovery, C-glycoside formation, cyanation, and global deprotection steps constitute one of the most efficient syntheses of GS-441524. Furthermore, transient protection was applied on GS-441524 with phenyl boronic acid, which facilitated a powerful one-pot synthesis of remdesivir.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号