首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   406篇
  免费   11篇
  国内免费   32篇
化学   369篇
晶体学   6篇
力学   5篇
综合类   7篇
数学   12篇
物理学   50篇
  2023年   5篇
  2022年   24篇
  2021年   21篇
  2020年   18篇
  2019年   10篇
  2018年   6篇
  2017年   21篇
  2016年   17篇
  2015年   13篇
  2014年   24篇
  2013年   17篇
  2012年   20篇
  2011年   17篇
  2010年   12篇
  2009年   13篇
  2008年   16篇
  2007年   18篇
  2006年   21篇
  2005年   27篇
  2004年   22篇
  2003年   17篇
  2002年   8篇
  2001年   11篇
  2000年   11篇
  1999年   9篇
  1998年   11篇
  1997年   8篇
  1996年   5篇
  1995年   4篇
  1994年   4篇
  1993年   6篇
  1991年   6篇
  1990年   1篇
  1988年   1篇
  1987年   1篇
  1985年   1篇
  1980年   1篇
  1979年   2篇
排序方式: 共有449条查询结果,搜索用时 46 毫秒
1.
This study analyzes the economics of transshipping biomass from truck to train in a North American setting. Transshipment will only be economic when the cost per unit distance of a second transportation mode is less than the original mode. There is an optimum number of transshipment terminals which is related to biomass yield. Transshipment incurs incremental fixed costs, and hence there is a minimum shipping distance for rail transport above which lower costs/km offset the incremental fixed costs. For transport by dedicated unit train with an optimum number of terminals, the minimum economic rail shipping distance for straw is 170 km, and for boreal forest harvest residue wood chips is 145 km. The minimum economic shipping distance for straw exceeds the biomass draw distance for economically sized centrally located power plants, and hence the prospects for rail transport are limited to cases in which traffic congestion from truck transport would otherwise preclude project development. Ideally, wood chip transport costs would be lowered by rail transshipment for an economically sized centrally located power plant, but in a specific case in Alberta, Canada, the layout of existing rail lines precludes a centrally located plant supplied by rail, whereas a more versatile road system enables it by truck. Hence for wood chips as well as straw the economic incentive for rail transport to centrally located processing plants is limited. Rail transshipment may still be preferred in cases in which road congestion precludes truck delivery, for example as result of community objections.  相似文献   
2.
Following detoxification of the liquid hydrolysate produced in a corn stover pretreatment process, inhibitor levels are seen to increase with the re-addition of solids for the ensuing hydrolysis and fermentation processes. The solids that were separated from the slurry before detoxification of the liquor contain approx 60% (w/w) moisture, and contamination occurs owing to the diffusion of inhibitors from the moisture entrained in the porous structure of the corn stover solids into the bulk fluid. This evidence suggests the need for additional separation and detoxification steps to purge residual inhibitors entrained in the moisture in the solids. An overliming process to remove furans from the hydrolysate failed to reduce total organic acids concentration, so acids were removed by treatment with an activated carbon powder. Smaller carbon doses proved more efficient in removing organic acids in terms of grams of acid removed per gram of carbon powder. Sugar adsorption by the activated carbon powder was minimal.  相似文献   
3.
The effect of aeration on lignin peroxidase production by Streptomyces viridosporus T7A was studied in a bench-scale bioreactor using a previously optimized growth medium (0.65% yeast extract and 0.1% corn oil, pH7.0) at 37°C and natural pH. Airflow rates of 0.3, 1.0, and 1.5 vvm and a fixed agitation of 200 rpm were initially studied followed by 1.0 vvm and 200, 300, 400, and 500 rpm. The use of 1.0 vvm and 400 rpm increased enzyme concentration 1.8-fold (100–180 U/L) and process productivity 4.8-fold (1.4–6.7 U/[L·h]) in comparison with the use of 200 rpm and 0.3 vvm. The inexpensive corn oil, used as carbon source, besides its antifoam properties, proved to be nonrepressive for enzyme production.  相似文献   
4.
The aim of this paper is to characterize some raw materials used for ceramics material production. Five samples of clay have been analyzed. It has been carried out a patterned sampling in a quarry in Rosarno (South Italy). Chemical-physical properties on clay samples are determined. Test pieces have been prepared and physical properties after firing are determined by DSC thermal analysis, XRD analysis and X-ray fluorescence. It is important to note the high amount of Fe2O3. The mixture principally contains quartz, illite and oligoclase. It has been observed the colour and the shape after firing: predominant colour is red. In this case the clay has been used in mixtures covered with glazes. The colour of internal clay is hidden by opaque of glazes. The analysed raw materials can be used in a slip for single fired red tiles. The A2sp clay produces best ceramics at 1000°C.  相似文献   
5.
Capillary gas chromatography was applied to study the sorption of aliphatic ketones (C6—C11), including metamers, from aqueous solutions by corn starch cryotextures. The amount of ketones sorbed by cryotextures depends linearly on their concentrations in the initial sol. Equations describing the concentration dependence of sorption were proposed. The shape of sorption isotherms reflects the strength of sorption. The binding constants and the number of binding sites were determined for weakly sorbed ketones. The length of alkyl substituent and the position of the functional group are the crucial factors governing the sorption of ketones under conditions of excess binding sites. It was found that the degree of sorption increases with an increase in the carbon chain length from 6 to 9 carbon atoms. The presence of cooperation of binding sites for ketone sorption by cryotextures was demonstrated. The major part of ketones is sorbed irreversibly. This fact points to the formation of supramolecular complexes. Ketones with lower molecular masses are better sorbed by cryotextures than by native starch grains.  相似文献   
6.
Technologies suitable for the separation and reuse of cellulase enzymes during the enzymatic saccharification of pretreated corn stover are investigated to examine the economic and technical viability of processes that promote cellulase reuse while removing inhibitory reaction products such as glucose and cellobiose. The simplest and most suitable separation is a filter with relatively large pores on the order of 20–25 mm that retains residual corn stover solids while passing reaction products such as glucose and cellobiose to form a sugar stream for a variety of end uses. Such a simple separation is effective because cellulase remains bound to the residual solids. Ultrafiltration using 50-kDa polyethersulfone membranes to recover cellulase enzymes in solution was shown not to enhance further the saccharification rate or overall conversion. Instead, it appears that the necessary cellulase enzymes, including β-glucosidase, are tightly bound to the substrate; when fresh corn stover is contacted with highly washed residual solids, without the addition of fresh enzymes, glucose is generated at a high rate. When filtration was applied multiple times, the concentration of inhibitory reaction products such as glucose and cellobiose was reduced from 70 to 10 g/L. However, an enhanced saccharification performance was not observed, most likely because the concentration of the inhibitory products remained too high. Further reduction in the product concentration was not investigated, because it would make the reaction unnecessarily complex and result in a product stream that is much too dilute to be useful. Finally, an economic analysis shows that reuse of cellulase can reduce glucose production costs, especially when the enzyme price is high. The most economic performance is shown to occur when the cellulase enzyme is reused and a small amount of fresh enzyme is added after each separation step to replace lost or deactivated enzyme.  相似文献   
7.
Corn steep liquor (CSL), a byproduct of the corn wet-milling process, was used in an immobilized cell continuous biofilm reactor to replace the expensive P2 medium ingredients. The use of CSL resulted in the production of 6.29 g/L of total acetone-butanol-ethanol (ABE) as compared with 6.86 g/L in a control experiment. These studies were performed at a dilution rate of 0.32 h−1. The productivities in the control and CSL experiment were 2.19 and 2.01 g/(L·h), respectively. Although the use of CSL resulted in a 10% decrease in productivity, it is viewed that its application would be economical compared to P2 medium. Hence, CSL may be used to replace the P2 medium. It was also demonstrated that inclusion of butyrate into the feed was beneficial to the butanol fermentation. A control experiment produced 4.77 g/L of total ABE, and the experiment with supplemented sodium butyrate produced 5.70 g/L of total ABE. The butanol concentration increased from 3.14 to 4.04 g/L. Inclusion of acetate in the feed medium of the immobilized cell biofilm reactor was not found to be beneficial for the ABE fermentation, as reported for the batch ABE fermentation. Names are necessary to report factually on available data. However, the USDA neither guarantees nor warrants the standard of the product, and the use of the names by USDA implies no approval of the product to the exclusion of others that may also be suitable.  相似文献   
8.
Several thousand tons of medical herbs are produced annually by pharmaceutical industry in Poland. This product should be of highest quality and microbial purity. Recently, chemical methods of decontamination are recognized as less safe, thus irradiation technique was chosen to replace them in use. In the Institute of Nuclear Chemistry and Technology the national program on the application of irradiation to the decontamination of medical herbs is in progress now. The purpose of the program is to elaborate, on the basis of research work, the facility standards and technological instructions indispensable for the practice of radiation technology.  相似文献   
9.
A starter culture ofTrichoderma reesei (Rut-C30) prepared in a liquid fluidized bed reactor (LFBR) gave better growth and greater cellulase production in submerged fermentation than a conventional shake flask inoculum. The LFBR starter was prepared by first coatingT. reesei spores to 0.25 mm size corncob (1.0x108g-1) in a medium containing 1.0% corncob, 0.5 gL-1 xylose and 0.1 gL-1 lactose in a balanced salt solution, then fluidizing the particles in the LFBR for 36 h to allow germination of the spores, and covering the particles with an approx 30 μm thick biofilm. This biofilm that developed in constant adherence to the lignocellulosic carrier, apparently became well adapted to grow rapidly on insoluble cellulose substrates (Solca Floc), and had the enzymes of the cellulase complex induced for increased cellulase production. The LFBR starter used in a stirred tank reactor (STR) gave 15 gL-1 biomass production and 6.5 IU mL-1 overall cellulase activity with a volumetric productivity of 64 IU L-1h-1 in a 5 d fermentation, compared with a 7 d shake flask inoculum that gave 11 gL-1 biomass and 3.2 IU mL-1 cellulase activity, with a volumetric productivity of 31IU L-1h-1. The LFBR starter culture retained its viability in dry storage for 6–9 mo.  相似文献   
10.
Ethanol production from steam-explosion pretreated wheat straw   总被引:1,自引:0,他引:1  
Bioconversion of cereal straw to bioethanol is becoming an attractive alternative to conventional fuel ethanol production from grains. In this work, the best operational conditions for steam-explosion pretreatment of wheat straw for ethanol production by a simultaneous saccharification and fermentation process were studied, using diluted acid [H2SO4 0.9% (w/w)] and water as preimpregnation agents. Acid-or water-impregnated biomass was steam-exploded at different temperatures (160–200°C) and residence times (5, 10, and 20 min). Composition of solid and filtrate obtained after pretreatment, enzymatic digestibility and ethanol production of pretreated wheat straw at different experimental conditions was analyzed. The best pretreatment conditions to obtain high conversion yield to ethanol (approx 80% of theoretical) of cellulose-rich residue after steam-explosion were 190°C and 10 min or 200°C and 5 min, in acid-impregnated straw. However, 180°C for 10 min in acid-impregnated biomass provided the highest ethanol yield referred to raw material (140 L/t wheat straw), and sugars recovery yield in the filtrate (300 g/kg wheat straw).  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号