首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   29篇
  免费   3篇
  国内免费   13篇
化学   43篇
晶体学   1篇
物理学   1篇
  2020年   2篇
  2019年   2篇
  2017年   1篇
  2016年   2篇
  2015年   2篇
  2014年   1篇
  2013年   3篇
  2012年   2篇
  2011年   2篇
  2009年   1篇
  2008年   1篇
  2007年   3篇
  2005年   1篇
  2004年   1篇
  2002年   4篇
  2001年   1篇
  2000年   3篇
  1999年   3篇
  1998年   2篇
  1997年   3篇
  1995年   3篇
  1992年   1篇
  1989年   1篇
排序方式: 共有45条查询结果,搜索用时 31 毫秒
1.
A uniform dispersion of reactants is necessary to achieve a complete reaction involving multicomponents. In this study, we have examined the role of plasticizer in the reaction of two seemingly unlikely reactants: a highly crystalline hexamethylenetetramine (HMTA) and a strongly hydrogen bonded phenol formaldehyde resin. By combining information from NMR, infrared spectroscopy and differential scanning calorimetry, we were able to determine the role of specific intermolecular interactions necessary for the plasticizer to dissolve the highly crystalline HMTA and to plasticize the phenol formaldehyde resin in this crosslinking reaction. The presence of the plasticizer increased the segmental mobility, disrupted the hydrogen bonded matrix, and freed the hydroxyl units, which further increased the solubility of the HMTA. Both the endothermic and exothermic transitions are accounted for in the calorimetric data obtained. For the first time, it is possible to obtain the effective molar ratio of each component needed to complete the crosslinking reaction efficiently. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2015 , 53, 1519–1526  相似文献   
2.
The degree of phase separation in several moisture‐cured poly(urethane urea)s (PUUs) was studied by FTIR spectroscopy, wide angle X‐ray diffraction (WAXD), and temperature‐modulated differential scanning calorimetry (TMDSC). This latter technique was shown to be particularly useful in analysing the degree of phase separation in PUU polymers. Both phase mixing and phase segregation coexisted in the PUUs and the degree of phase separation increased as the urea hard segment (HS) content in the PUU increased. The maximum solubility of urea HSs into the polyol soft segments (SSs) was achieved for 50 wt % urea HS content in diol‐based PUUs, whereas for triol‐based PUUs the highest solubility between HS and SS was reached for lower urea HS amount. Finally, the higher the urea HS content the higher the extent of phase separation in the PUU. © 2007 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 3034–3045, 2007  相似文献   
3.
聚偶氮酯的合成及用于乳液聚合   总被引:2,自引:0,他引:2  
<正> 偶氮二异丁腈(AIBN)与二元醇反应得到聚偶氮酯(polyazoester),进而可按自由基反应引发单体聚合制备嵌段共聚物,近年来国外已有研究,其所用单体多为1,6-己二醇等低分子二元醇。本实验选用AIBN和PEG 400,用Pinner合成法经改进后制得了聚偶氮酯,分析了该产物的结构和热分解动力学,并使之部分分解引发丙烯酰胺得到了兼具表面活性和引发活性的预聚物。结果表明,这种预聚物用于醋酸乙烯聚合、苯乙烯和  相似文献   
4.
Due to the environmental pollution caused by the petroleum-based polymer, poly (lactic acid) (PLA), a biodegradable and biocompatible polymer that obtained from natural and renewable sources, has attracted widespread attention. However, the brittleness of PLA greatly limits its application. In this study, the super toughened PLA-based blends were obtained by compatibilizing the PLA/thermoplastic polyurethane (TPU) blends with the polyurethane elastomer prepolymer (PUEP) as an active compatibilizer. The mechanical properties, thermal properties and corresponding toughening mechanism of PLA/TPU/PUEP system were studied by tensile test, instrumented impact test, dynamic mechanical analysis (DMA), scanning electronic microscope (SEM), differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA). All the results demonstrate that the isocyanate (−NCO) group in PUEP is successfully reacted with the –OH groups at both sides of the PLA and the obtained polyurethane (PU)~PLA copolymer (PU ~ cõ PLA) significantly improves the interfacial compatibility of PLA/TPU blends. The gradually refined dispersed phase size and fuzzy phase interface as displayed in SEM images suggest a good interfacial compatibilization in the PLA/TPU/PUEP blends, probably due to the isocyanate reaction between PLA and PUEP. And the interfacial reaction and compatibilization among the components led to the formation of super toughened PLA/TPU/PUEP blends. And the instrumented impact results indicate that most of the impact toughness is provided by the crack propagation rather than the crack initiation during the entire fracture process.  相似文献   
5.
A new generation of segmented thermoplastic poly(urethane-thiourea-imide)s (PUTIs) was synthesized via reaction of polyethylene glycol and thiourea-based prepolymer with dianhydride as chain extenders. NCO-terminated prepolymer was synthesized from a new diisocyanate, 3-(3-((4-isocyanatophenyl)carbamoyl)thioureido)phenyl-4-isocyanatophenylcarbamate (IPCT), as a hard segment and PEG forming soft segment. The starting materials and polymers were characterized by conventional methods and physical properties such as solubility, solution viscosity, molecular weight, thermal stability and thermal behavior were studied. PUTIs showed partially crystalline structures. Weight average molecular weights of PUTIs (GPC measurements) were in the range of 1,68,694-1,97,035. Moreover, thermogravimetric analysis indicated that poly(urethane-thiourea-imide)s were fairly stable above 500 °C having T10 of 521-543 °C. Investigation of the results authenticated the approach of introducing thiourea (using IPCT) and imide structure in polyurethanes for the improvement of thermal stability. In comparison to typical polyurethanes, these polymers exhibited better heat resistance, chemical resistance as well as processability.  相似文献   
6.
A set of poly(urethane‐imide)s were prepared using blocked Polyurethane (PU) prepolymer and pyromellitic dianhydride (PMDA). The PU prepolymer was prepared by the reaction of polyether glycol and 2,4‐tolylene diisocyanate, and end capped with N‐methyl aniline. The PU prepolymer was reacted with PMDA until the evolution of carbon dioxide ceased. The effect of tertiary amine catalysts, organo tin catalysts, solvents, and reaction temperature were studied and compared with the poly(urethane‐imide) prepared using phenol‐blocked PU prepolymer. N‐methyl aniline blocked PU prepolymer gave a higher molecular weight poly(urethane‐imide) at a lower reaction temperature in a shorter time. Amine catalysts were found to be more efficient than organo tin catalysts. The reaction was favorable in particular with N‐ethylmorpholine and diazabicyclo(2.2.2)octane (DABCO) as catalysts, and dimethylpropylene urea as a reaction medium. The poly(urethane‐imide)s were characterized by FTIR, GPC, TGA, and DSC analyses. The molecular weight decreased with an increase in reaction temperature. The thermal stability of the PU was found to increase by the introduction of imide component. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 4032–4037, 2000  相似文献   
7.
A series of polyurethane/polyaniline/silica organic/inorganic hybrids were synthesized via the conventional polyurethane (PU) prepolymer technique. Amine-endcapped polyaniline (PANI) with low molecular weight and higher solubility was firstly synthesized. This PANI oligomer was then used together with nano-silica bearing silanol groups as chain extenders to prepare the conducting polyurethane hybrids. The polyurethane hybrids were designated as PU-xPANI-ySiO2 (x + y = 1). For comparison, the urethane-aniline block copolymer and the PU/silica hybrid were designated as PU-PANI and PU-SiO2, respectively.The structures of PU-PANI, PU-SiO2 and conducting polyurethane hybrids were confirmed by FT-IR, solid-state 13C, and 29Si NMR spectra. In nano-silica containing organic/inorganic conducting polyurethane hybrids, UV-vis spectra revealed the maximum absorption bands similar to that of PU-PANI. X-ray diffraction patterns indicated that these samples are typical of semicrystalline/amorphous materials. SEM image of PU-0.5PANI-0.5SiO2 showed that PANI was dispersed homogeneously and interconnected continuously in the insulating PU-silica matrix. TGA results of the polymer hybrids exhibited higher thermal stabilities and lower decomposition rates than that of PU-PANI both in nitrogen and air. Differential scanning calorimetry (DSC) studies indicated that the polyurethane hybrids had higher glass-transition temperatures (Tg) with the increase of PANI, but lower than that of PU-PANI. Stress-strain curves for all of the polyurethane hybrids showed the elastomeric behavior of typical polyurethanes. The surface resistivity values of all hybrids were about 108 ∼ 1010 Ω/sq. and might meet the requirement of the anti-electrostatic materials.  相似文献   
8.
一类高折射率光固化有机硅树脂的性能研究   总被引:1,自引:0,他引:1  
光固化有机硅材料兼具光固化的高效、能耗低和环保以及有机硅树脂优异的耐温、耐候性和电绝缘性能,因此,在LED等电子器件封装方面受到广泛关注.本文研究了自制的3种含丙烯酸酯基团的光固化苯基有机硅预聚物KDS-10、KMDS-03和KMS-03的光固化特性、光学性能和热稳定性能.结果表明,这些有机硅预聚物的折光指数随苯环含量的增加而增高,苯环含量从22.3%到37.7%,折光指数相应从1.496到1.542;3种预聚物与多种丙烯酸酯相容性好,用双官能的TPGDA作稀释剂,固化反应速率最快,丙烯酸酯基团的转化率也最高;光引发剂TPO引发的光固化反应速率和转化率均最高;高折射率有机硅预聚物KDS-10光固化后的薄膜具有优异的光学性能,在550 nm处的透过率为92.54%;玻璃化转变温度约为-17.41℃,起始分解温度为385℃.  相似文献   
9.
可湿气固化的硅烷化聚醚的研究   总被引:6,自引:0,他引:6  
以聚醚多元醇为原料 ,通过聚氨酯预聚体的方法制得了可湿气固化的硅烷化聚醚 ,研究了温度和时间对反应的影响 ,以及不同NCO/OH比值对固化物力学性能的影响。结果表明 ,固化后形成的弹性体的不同力学性能可通过调节不同NCO/OH的比值而获得  相似文献   
10.
The molecular structure of the hydrolyzate, and of the prepolymers and polymerization products of phenyltrichlorosilane and diphenyldichlorosilane are investigated. 29Si-NMR measurements reveal the kinds of component units and their ratio in each synthesis step. The molecular structure of the prepolymer chain end and the polymerization product are also discussed in relation to the change in the NMR spectra. © 1995 John Wiley & Sons, Inc.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号