首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   13042篇
  免费   1993篇
  国内免费   936篇
化学   12781篇
晶体学   108篇
力学   153篇
综合类   41篇
数学   21篇
物理学   2867篇
  2024年   36篇
  2023年   213篇
  2022年   544篇
  2021年   623篇
  2020年   837篇
  2019年   647篇
  2018年   552篇
  2017年   621篇
  2016年   883篇
  2015年   869篇
  2014年   932篇
  2013年   1259篇
  2012年   1089篇
  2011年   993篇
  2010年   774篇
  2009年   797篇
  2008年   691篇
  2007年   700篇
  2006年   569篇
  2005年   451篇
  2004年   355篇
  2003年   327篇
  2002年   247篇
  2001年   202篇
  2000年   131篇
  1999年   126篇
  1998年   86篇
  1997年   66篇
  1996年   49篇
  1995年   44篇
  1994年   29篇
  1993年   30篇
  1992年   28篇
  1991年   22篇
  1990年   21篇
  1989年   10篇
  1988年   19篇
  1987年   15篇
  1986年   11篇
  1985年   7篇
  1984年   10篇
  1983年   6篇
  1982年   7篇
  1980年   5篇
  1979年   5篇
  1978年   3篇
  1977年   3篇
  1975年   8篇
  1973年   4篇
  1972年   4篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
1.
Reactivity studies of the GeII→B complex L(Cl)Ge⋅BH3 ( 1 ; L=2-Et2NCH2-4,6-tBu2-C6H2) were performed to determine the effect on the GeII→B donation. N-coordinated compounds L(OtBu)Ge⋅BH3 ( 2 ) and [LGe⋅BH3]2 ( 3 ) were prepared. The possible tuning of the GeII→B interaction was proved experimentally, yielding compounds 1-PPh2-8-(LGe)-C10H6 ( 4 ) and L(Cl)Ge⋅GaCl3 ( 5 ) without a GeII→B interaction. In 5 , an unprecedented GeII→Ga coordination was revealed. The experimental results were complemented by a theoretical study focusing on the bonding in 1 − 5 . The different strength of the GeII→E (E=B, Ga) donation was evaluated by using energy decomposition analysis. The basicity of different L(X)Ge groups through proton affinity is also assessed.  相似文献   
2.
《Mendeleev Communications》2022,32(6):777-779
The reactions of aryllithium reagents o-LiC6H4CH2NR2 with (MeO)2CO afford two new tris(aryl)carbinols bearing pendant-NR2 donor groups in the side chain [o-R NCH C H ] COH [R = Me, R + R = (CH) ]. These alcohols feature helical chirality due to differently inclined aromatic fragments and are presented in a crystalline cell as two M and P enantiomers. Carbinol (R = Me) readily reacts with (Me3SiCH2)3Sc(THF)2 to give a scandium bis(alkyl) complex [(o-C6H4CH2NMe2)3CO]Sc(CH2SiMe3)2 featuring rigid binding of the alkoxy anion through a κ1-O, κ2-N chelating coordination mode  相似文献   
3.
Herein, we report a Mott-Schottky catalyst by entrapping cobalt nanoparticles inside the N-doped graphene shell (Co@NC). The Co@NC delivered excellent oxygen evolution activity with an overpotential of merely 248 mV at a current density of 10 mA cm–2 with promising long-term stability. The importance of Co encapsulated in NC has further been demonstrated by synthesizing Co nanoparticles without NC shell. The synergy between the hexagonal close-packed (hcp) and face-centered cubic (fcc) Co plays a major role to improve the OER activity, whereas the NC shell optimizes the electronic structure, improves the electron conductivity, and offers a large number of active sites in Co@NC. The density functional theory calculations have revealed that the hcp Co has a dominant role in the surface reaction of electrocatalytic oxygen evolution, whereas the fcc phase induces the built-in electric field at the interfaces with N-doped graphene to accelerate the H+ ion transport.  相似文献   
4.
A facile biosynthesis route was followed to prepare zinc oxide nanoparticles (ZnO NPs) using Euphorbia milii (E. milii) leaf constituents. The SEM images exhibited presence of spherical ZnO NPs and the corresponding TEM images disclosed monodisperse nature of the ZnO NPs with diameter ranges between 12 and 20 nm. The Brunauer–Emmett–Teller (BET) analysis revealed that the ZnO NPs have specific surface area of 20.46 m2/g with pore diameter of 2 nm–10 nm and pore volume of 0.908 cm3/g. The EDAX spectrum exemplified the existence of Zn and O elements and non-appearance of impurities that confirmed pristine nature of the ZnO NPs. The XRD pattern indicated crystalline peaks corresponding to hexagonal wurtzite structured ZnO with an average crystallite size of 16.11 nm. The FTIR spectrum displayed strong absorption bands at 512 and 534 cm?1 related to ZnO. The photocatalytic action of ZnO NPs exhibited noteworthy degradation of methylene blue dye under natural sunlight illumination. The maximum degradation efficiency achieved was 98.17% at an illumination period of 50 min. The reusability study proved considerable photostability of the ZnO NPs during photocatalytic experiments. These findings suggest that the E. milii leaf constituents can be utilized as suitable biological source to synthesis ZnO NPs for photocatalytic applications.  相似文献   
5.
Herein, we report the synthesis of specific silica-supported Co/Co3O4 core–shell based nanoparticles prepared by template synthesis of cobalt-pyromellitic acid on silica and subsequent pyrolysis. The optimal catalyst material allows for general and selective hydrogenation of pyridines, quinolines, and other heteroarenes including acridine, phenanthroline, naphthyridine, quinoxaline, imidazo[1,2-a]pyridine, and indole under comparably mild reaction conditions. In addition, recycling of these Co nanoparticles and their ability for dehydrogenation catalysis are showcased.  相似文献   
6.
Triene 6π electrocyclization, wherein a conjugated triene undergoes a concerted stereospecific cycloisomerization to a cyclohexadiene, is a reaction of great historical and practical significance. In order to circumvent limitations imposed by the normally harsh reaction conditions, chemists have long sought to develop catalytic variants based upon the activating power of metal–alkene coordination. Herein, we demonstrate the first successful implementation of such a strategy by utilizing [(C5H5)Ru(NCMe)3]PF6 as a precatalyst for the disrotatory 6π electrocyclization of highly substituted trienes that are resistant to thermal cyclization. Mechanistic and computational studies implicate hexahapto transition-metal coordination as responsible for lowering the energetic barrier to ring closure. This work establishes a foundation for the development of new catalysts for stereoselective electrocyclizations.  相似文献   
7.
Palladium nanoparticle‐incorporated metal–organic framework MIL‐101 (Pd/MIL‐101) was successfully synthesized and characterized using X‐ray diffraction, nitrogen physisorption, X‐ray photoelectron, UV–visible and infrared spectroscopies, and transmission electron microscopy. The characterization techniques confirmed high porosity and high surface area of MIL‐101 and high stability of nano‐size palladium particles. Pd/MIL‐101 nanocomposite was investigated for the Sonogashira cross‐coupling reaction of aryl and heteroaryl bromides with various alkynes under copper‐free conditions. The reusability of the catalyst was tested for up to four cycles without any significant loss in catalytic activity. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
8.
In this communication, we report the synthesis of small‐sized (<10 nm), water‐soluble, magnetic nanoparticles (MNPs) coated with polyhedral oligomeric silsesquioxanes (POSS), which contain either polyethylene glycol (PEG) or octa(tetramethylammonium) (OctaTMA) as functional groups. The POSS‐coated MNPs exhibit superparamagnetic behavior with saturation magnetic moments (51–53 emu g?1) comparable to silica‐coated MNPs. They also provide good colloidal stability at different pH and salt concentrations, and low cytotoxicity to MCF‐7 human breast epithelial cells. The relaxivity data and magnetic resonance (MR) phantom images demonstrate the potential application of these MNPs in bioimaging.  相似文献   
9.
Silver nanoparticles (NPs) ranging in size from 40 to 100 nm were prepared in high yield by using an improved seed‐mediated method. The homogeneous Ag NPs were used as building blocks for 2D assembled Ag NP arrays by using an oil/water interface. A close‐packed 2D array of Ag NPs was fabricated by using packing molecules (3‐mercaptopropyltrimethoxysilane) to control the interparticle spacing. The homogeneous 2D Ag NP array exhibited a strong quadrupolar cooperative plasmon mode resonance and a dipolar red‐shift relative to individual Ag NPs suspended in solution. A well‐arranged 2D Ag NP array was embedded in polydimethylsiloxane film and, with biaxial stretching to control the interparticle distance, concomitant variations of the quadrupolar and dipolar couplings were observed. As the interparticle distance increased, the intensity of the quadrupolar cooperative plasmon mode resonance decreased and dipolar coupling completely disappeared. The local electric field of the 2D Ag NP array was calculated by using finite difference time domain simulation and qualitatively showed agreement with the experimental measurements.  相似文献   
10.
In this study, parenchyma cellulose, which was extracted from maize stalk pith as an abundant source of agricultural residues, was applied for preparing cellulose nanoparticles (CNPs) via an ultrasound-assisted etherification and a subsequent sonication process. The ultrasonic-assisted treatment greatly improved the modification of the pith cellulose with glycidyltrimethylammonium chloride, leading to a partial increase in the dissolubility of the as-obtained product and thus disintegration of sheet-like cellulose into nanoparticles. While the formation of CNPs by ultrasonication was largely dependent on the cellulose consistency in the cationic-modified system. Under the condition of 25% cellulose consistency, the longer sono-treated duration yielded a more stable and dispersible suspension of CNP due to its higher zeta potential. Degree of substitution and FT-IR analyses indicated that quaternary ammonium salts were grafted onto hydroxyl groups of cellulose chain. SEM and TEM images exhibited the CNP to have spherical morphology with an average dimeter from 15 to 55 nm. XRD investigation revealed that CNPs consisted mainly of a crystalline cellulose Ι structure, and they had a lower crystallinity than the starting cellulose. Moreover, thermogravimetric results illustrated the thermal resistance of the CNPs was lower than the pith cellulose. The optimal CNP with highly cationic charges, good stability and acceptable thermostability might be considered as one of the alternatively renewable reinforcement additives for nanocomposite production.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号