首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4篇
  免费   0篇
化学   4篇
  2005年   2篇
  2002年   2篇
排序方式: 共有4条查询结果,搜索用时 15 毫秒
1
1.
Summary Two hydrated and aged cement pastes from India (NCB), w/c=0.4, of a similar chemical composition but of a different specific surface and different strength (OPC, C-33 and C-43), hydrated at w/c=0.4 for 1 month, were studied by XRD after 1 year and 5-6 year ageing on contact with air. They were tested by static heating (SH) in fresh state, and by DTA/DTG/TG, IR and mass spectrometry (MS), after ageing, presented elsewhere. The main XRD peaks of (i) portlandite were decreasing with T and disappearing about 450°C, (ii) calcite peak at room T was small and broad, it increased gradually, especially after portlandite disappearance; above 600°C it was lowered and it was lost above 700°C. Important variation in the d(001) of portlandite with ageing was observed, exceeding the standard value of d(001)=4.895 Å (72-0156). It was higher in the paste C-33 (4.925-4.936 Å), containing more carbonates, than in the paste C-43 (4.916-4.927 Å). Small variations only were found in the value of d(101), i.e. 2.627-2.635 Å (nominally 2.622 Å), whereas the d(104) of calcite could be used as internal standard and other calcium carbonates (vaterite and aragonite) showed a small variation only. The increase ind(hkl) with temperature was straight linear (in portlandite d(001)=0.095 Å, at 30-400°C) and the thermal expansion coefficient estimated thereform was high (4.75-4.95·10-5 K-1). Close to the T of decomposition the d/T became steeper. The thermal variation of d(104)=3.035 Å of calcite (d=0.015 Å at 30-400°C) was smaller than that ofd(101) of portlandite (d=0.025 Å at 30-400°C) and was similar in C-33 and C-43. The thermal expansion coefficient was 1.54 10-5 K-1, thus higher than the reported a=0.65·10-5 K-1.  相似文献   
2.
Summary Previous study of the hydration and ageing products of two cement pastes created the basis for the postulate of the course of solid-state reactions between the portlandite Ca(OH)2 and the CO2 from air in the hydrated and air dry cement. XRD basal spacing d(001) of portlandite exceeded the nominal value and increased with ageing, with the wetting and drying procedure and with carbonate content of the paste, indicating that a part of OH- ions was gradually substituted by CO32- ions, which are about twice bigger. IR spectroscopy showed a considerable content of portlandite, of CO32- of water and silicates. Also HCO3- H2O and CO2 in cavities between hexagonal rings and hexagonal hydrates were indicated. By MS (mass spectrometry) in vacuum the evaporation of sorbed water was detected at 100-120°C, of gel water at 350°C of portlandite water at 400°C and of high temperature water between 500 and 700°C, simultaneously with CO2 escape. Slightly higher peak temperatures were found by the TG test either in air or in argon. From these results and from geometric considerations it is postulated that the solid-state reactions take place on ageing of the cement paste and on its heating: hexagonal portlanditecalcium carbonate hydroxy hydratecalcium carbonate hydratehexagonal vaterite and/or orthorhombic aragoniterhombohedral calcite The analysis of the standard files of the calcium carbonate hydroxy hydrates supports this postulate and indicates a gradual transformation.  相似文献   
3.
Main hydration products of two cement pastes, i.e. CSH-gel, portlandite (P) (and specific surface S) were studied by static heating, and by SEM, TEM and XRD, as a function of cement strength (C-33 and C-43) hydration time (th) and subsequent hydration in water vapour.Total change in mass on hydration and air drying, Mo, increased with strength of cement paste and with hydration time. Content of water escaping at 110 to 220°C, defined as water bound with low energy, mainly interlayer and hydrate water, was independent on cement strength but its content increased with (th). Content of chemically bound (zeolitic) water in CSH-gel, escaping at 220-400°C, was slightly dependent on strength and increased with (th). It was possibly derived from the dehydroxylation of CSH-gel and AFm phase. Portlandite water, escaping at 400-500°C, was independent on cement strength and was higher on longer hydration. Large P crystals were formed in the weaker cement paste C-33. Smaller crystals were formed in C-43 but they increased with (th). Carbonate formated on contact with air (calcite, vaterite and aragonite), decomposed in cement at 600-700oC. It was high in pastes C-33(1 month) and C-43(1 month), i.e. 5.7 and 3.3%, respectively; it was less than 1% after 6 hydration months (low sensitivity to carbonation) in agreement with the XRD study showing carbonates in the air dry paste (1month), and its absence on prolonged hydration (6 months) and on acetone treatment. Water vapour treatment of (6 months) pastes or wetting-drying increased this sensitivity.Nanosized P-crystals, detected by TEM, could contribute to the cement strength; carbonate was observed on the rims of gel clusters.This revised version was published online in November 2005 with corrections to the Cover Date.  相似文献   
4.
In this paper, evaluation of kinetic parameters (the activation energy – E,the pre-exponential factor – A and the reaction order – n) with simultaneous determination of the possible reaction mechanism of thermal decomposition of calcium hydroxide (portlandite), Ca(OH)2 formed during hydration of commercial Portland-slag cement, by means of differential scanning calorimetry (DSC) in non-isothermal conditions with a single heating–rate plot has been studied and discussed. The kinetic parameters and a mechanism function were calculated by fitting the experimental data to the integral, differential and rate equation methods. To determine the most probable mechanism, 30 forms of the solid-state mechanism functions, fc) have been tried. Having used the procedure developed and the appropriate program support, it has been established that the non-isothermal thermal decomposition of calcium hydroxide in the acceleratory period (0.004<αc<0.554) can be described by the rate equation: d αc/dT=A/βexp(−E/RT)fc), which is based on the concept of the mechanism reaction:fc)=2(αc)1/2. The mechanism functions as well as the values of the kinetic parameters are in good agreement with those given in literature. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号