首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5篇
  免费   0篇
化学   5篇
  2009年   1篇
  2005年   1篇
  2004年   1篇
  2002年   1篇
  1998年   1篇
排序方式: 共有5条查询结果,搜索用时 0 毫秒
1
1.
A poly(N-isopropylacrylamide) (PNIPAAm)-like biodegradable thermosensitive polydepsipeptide, poly[Glc-Asn(N-isopropyl)], was synthesized by introducing an isopropyl amide group into poly[Glc-Asn]. Poly[Glc-Asn(N-isopropyl)] was degraded in vitro by cleavage of the ester bonds in the main chain in water at room temperature. The non-toxic nature of the polymer and its degradation products, coupled with a cloud point at 29 degrees C in water, make this polymer attractive for biomedical implant applications.  相似文献   
2.
Recently,thesynthesisandapplications0fbiodegradablepolydepsipeptides,alternatingcopolymersofa-aminoacidanda-hydroxyacidwithfunctionalside-chaingroupshavedrawnmoreandmoreattentionl'2.Thisisbecausethefunctionalizedpendantgroups0fthep0lydepsipeptidesmakethemusefulf0rthepreparationofavarietyofpolymer-drugconjugates.However,thepolymerizati0nofdepsipeptideswithfuncti0nalgr0upsisratherdifficultduetotheirbigstructuresandsterichindrance.Furthermore,high-molecular-weightpr0ductsofsuitablephysicalpropert…  相似文献   
3.
The syntheses of amphiphilic AB‐type diblock copolymers composed of hydrophobic polylactide segment and hydrophilic polydepsipeptide segment with amino or carboxyl groups were performed. The protected cyclodepsipeptides cyclo[Glc‐Lys(Z)] and cyclo[Glc‐Asp(OBzl)] (where Glc is glycolic acid, Lys is lysine, Asp is aspartic acid, Z is benzyloxycarbonyl, and OBzl is benzyl) were first polymerized in tetrahydrofuran (THF) with potassium ethoxide as an initiator to obtain the corresponding protected polydepsipeptides. After the terminal hydroxyl groups of the protected polydepsipeptides were converted into the potassium alcoholates with K/naphthalene, L ‐lactide was polymerized in the presence of the corresponding polymeric alcoholates as macroinitiators in THF to obtain poly[Glc‐Lys(Z)]‐block‐poly(L ‐lactide) and poly[Glc‐Asp(OBzl)]‐block‐poly(L ‐lactide). Subsequent deprotection of Z and OBzl groups gave the objective amphiphiles poly(Glc‐Lys)‐block‐poly(L ‐lactide) and poly(Glc‐Asp)‐block‐poly(L ‐lactide), respectively. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 1218–1225, 2002  相似文献   
4.
A very important goal of researchers today is providing poly(L -lactide) (PLA)-based polymers with controllable degradation profiles, various (soft or elastic) mechanical properties, reactivity for chemical modification, and other functionalities while keeping the favorable characteristics of PLA. This article concerns the synthetic methods and properties of the following novel lactide copolymers: (1) random and block copolymers of depsipeptide and L -lactide with reactive (ionic) side-chain groups, (2) comb-type PLA and branched PLA, and (3) PLA-grafted polysaccharide and PLA with terminal saccharide residues. Poly(depsipeptide-random-L -lactide)s and polydepsipeptide-block-poly(L -lactide)s with reactive (ionic) side-chain groups should be useful for the preparation of matrices and microspheres with reactive surfaces because of their amphiphilic structures. Comb-type PLA and branched PLA show lower crystallinities than linear PLA. PLA-grafted polysaccharide should be useful for the preparation of matrices with various microstructures and mechanical and degradation properties through the introduction of hydrophilic segments. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 453–462, 2004  相似文献   
5.
To develop new types of biodegradable polymers possessing predictable responses to changes in temperature, ABA‐type and BAB‐type triblock copolymers composed of various polydepsipeptides (PDP) and poly(ethylene glycol) (PEG) (PDP‐PEG‐PDP and PEG‐PDP‐PEG) were synthesized. The specific focus of this study was on the effect of the different side‐chain groups of various amino acids on the temperature‐responsive behavior of the triblock copolymers. An ABA‐type triblock copolymer containing the less hydrophobic glycine (PGG‐PEG‐PGG) did not exhibit any temperature‐responsive behavior; however, ABA‐type triblock copolymers containing the hydrophobic α‐amino acids, L ‐leucine and L ‐phenylalanine (PGL‐PEG‐PGL or PGF‐PEG‐PGF), did exhibit temperature‐responsive behavior. The cloud point of PGF‐PEG‐PGF was 10 °C lower than that of PGL‐PEG‐PGL. It can be possible to control temperature‐sensitivity by changing not only PDP segment length but also kind of α‐amino acid in PDP segment. Moreover, BAB‐type triblock copolymer containing L ‐leucine (PEG‐PGL‐PEG) showed temperature‐responsive sol‐gel transition. Because polydepsipeptides are biodegradable polymers, the information obtained in this study is useful to design biodegradable injectable polymers having controllable temperature‐sensitivity for biomedical use.© 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 3892–3903, 2009  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号