首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2897篇
  免费   338篇
  国内免费   484篇
化学   2282篇
晶体学   53篇
力学   151篇
综合类   43篇
数学   103篇
物理学   1087篇
  2024年   9篇
  2023年   70篇
  2022年   182篇
  2021年   225篇
  2020年   215篇
  2019年   102篇
  2018年   116篇
  2017年   128篇
  2016年   134篇
  2015年   110篇
  2014年   112篇
  2013年   235篇
  2012年   123篇
  2011年   181篇
  2010年   148篇
  2009年   164篇
  2008年   170篇
  2007年   160篇
  2006年   166篇
  2005年   129篇
  2004年   103篇
  2003年   96篇
  2002年   110篇
  2001年   62篇
  2000年   82篇
  1999年   52篇
  1998年   60篇
  1997年   42篇
  1996年   41篇
  1995年   27篇
  1994年   38篇
  1993年   19篇
  1992年   20篇
  1991年   19篇
  1990年   16篇
  1989年   4篇
  1988年   10篇
  1987年   3篇
  1986年   1篇
  1985年   6篇
  1984年   7篇
  1983年   2篇
  1982年   1篇
  1981年   2篇
  1980年   3篇
  1979年   7篇
  1978年   3篇
  1977年   4篇
排序方式: 共有3719条查询结果,搜索用时 15 毫秒
1.
2.
Solar-driven interfacial vaporization by localizing solar-thermal energy conversion to the air−water interface has attracted tremendous attention. In the process of converting solar energy into heat energy, photothermal materials play an essential role. Herein, a flexible solar-thermal material di-cyan substituted 5,12-dibutylquinacridone (DCN−4CQA)@Paper was developed by coating photothermal quinacridone derivatives on the cellulose paper. The DCN−4CQA@Paper combines desired chemical and physical properties, broadband light-absorbing, and shape-conforming abilities that render efficient photothermic vaporization. Notably, synergetic coupling of solar-steam and solar-electricity technologies by integrating DCN−4CQA@Paper and the thermoelectric devices is realized without trade-offs, highlighting the practical consideration toward more impactful solar heat exploitation. Such solar distillation and low-grade heat-to-electricity generation functions can provide potential opportunities for fresh water and electricity supply in off-grid or remote areas.  相似文献   
3.
Gold nanoparticles with different mean sizes were formed on antimony-doped tin oxide nanocrystals by the temperature-varied deposition-precipitation method (Au/ATO NCs). Au/ATO NCs possess strong absorption in the near-infrared region due to Drude excitation in addition to the localized surface plasmon resonance (LSPR) of AuNPs around 530 nm. Au/ATO NCs show thermally activated catalytic activity for the oxidation of cinnamyl alcohol to cinnamaldehyde by hydrogen peroxide. The catalytic activity increases with a decrease in the mean Au particle size (dAu) at 5.3 nm≤dAu≤8.2 nm. Light irradiation (λex >660 nm, ∼0.5 sun) of Au/ATO NCs increases the rate of reaction by more than twice with ∼95 % selectivity. Kinetic analyses indicated that the striking enhancement of the reaction stems from the rise in the temperature near the catalyst surface of ∼30 K due to the photothermal effect of the ATO NCs.  相似文献   
4.
In this study, parenchyma cellulose, which was extracted from maize stalk pith as an abundant source of agricultural residues, was applied for preparing cellulose nanoparticles (CNPs) via an ultrasound-assisted etherification and a subsequent sonication process. The ultrasonic-assisted treatment greatly improved the modification of the pith cellulose with glycidyltrimethylammonium chloride, leading to a partial increase in the dissolubility of the as-obtained product and thus disintegration of sheet-like cellulose into nanoparticles. While the formation of CNPs by ultrasonication was largely dependent on the cellulose consistency in the cationic-modified system. Under the condition of 25% cellulose consistency, the longer sono-treated duration yielded a more stable and dispersible suspension of CNP due to its higher zeta potential. Degree of substitution and FT-IR analyses indicated that quaternary ammonium salts were grafted onto hydroxyl groups of cellulose chain. SEM and TEM images exhibited the CNP to have spherical morphology with an average dimeter from 15 to 55 nm. XRD investigation revealed that CNPs consisted mainly of a crystalline cellulose Ι structure, and they had a lower crystallinity than the starting cellulose. Moreover, thermogravimetric results illustrated the thermal resistance of the CNPs was lower than the pith cellulose. The optimal CNP with highly cationic charges, good stability and acceptable thermostability might be considered as one of the alternatively renewable reinforcement additives for nanocomposite production.  相似文献   
5.
占兴  熊巍  梁国熙 《化学进展》2022,34(11):2503-2516
随着经济的飞速发展,社会对能源的需求日益扩大,对工业废水的无害化处理也提出了更高的要求。光催化燃料电池 (photocatalytic fuel cell, PFC) 在燃料电池中引入半导体光催化材料作为电极,实现了有机污染物高效降解和同步对外产电的双重功能,在废水无害化与资源化利用方面具有潜在的应用价值。半导体光催化电极是PFC系统高效运行的核心组件,增强其可见光响应和光生载流子分离是提高PFC性能的关键策略。反应器结构设计和运行参数优化也有利于改善PFC性能。本文从PFC基本原理和应用入手,综述了PFC在环境污染物资源化处理中的研究进展,并详细阐述了提高PFC的污染控制性能和产电效率的优化手段,为进一步设计高效稳定的PFC系统并实现其在水污染控制和清洁能源生产中的应用提供理论指导。  相似文献   
6.
In the present work we describe a two‐dimensional liquid chromatographic system (2D‐LC) with detection by mass spectrometry (MS) for the simultaneous separation of endogenous metabolites of clinical interest and excreted xenobiotics deriving from exposure to toxic compounds. The 2D‐LC system involves two orthogonal chromatographic modes, hydrophilic interaction liquid chromatography (HILIC) to separate polar endogenous metabolites and reversed‐phase (RP) chromatography to separate excreted xenobiotics of low and intermediate polarity. Additionally, the present proposal has the novelty of incorporating an on‐line sample treatment based on the use of restricted access materials (RAMs), which permits the direct injection of urine samples into the system. The work is focused on the instrumental coupling, studying all possible options and attempting to circumvent the problems of solvent incompatibility between the RAM device and the two chromatographic columns, HILIC and RP. The instrumental configuration developed, RAM‐HILIC‐RPLC‐MS/MS, allows the simultaneous assessment of urinary metabolites of clinical interest and excreted compounds derived from exposure to toxic agents with minimal sample manipulation. Thus, it may be of interest in areas such as occupational and environmental toxicology in order to explore the possible relationship between the two types of compounds. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
7.
Iron catalysts have been used widely for the mass production of carbon nanotubes (CNTs) with high yield. In this study, UV/visible spectroscopy was used to determine the Fe catalyst content in CNTs using a colorimetric technique. Fe ions in solution form red–orange complexes with 1,10-phenanthroline, producing an absorption peak at λ=510 nm, the intensity of which is proportional to the solution Fe concentration. A series of standard Fe solutions were formulated to establish the relationship between optical absorbance and Fe concentration. Many Fe catalysts were microscopically observed to be encased by graphitic layers, thus preventing their extraction. Fe catalyst dissolution from CNTs was investigated with various single and mixed acids, and Fe concentration was found to be highest with CNTs being held at reflux in HClO4/HNO3 and H2SO4/HNO3 mixtures. This novel colorimetric method to measure Fe concentrations by UV/Vis spectroscopy was validated by inductively coupled plasma optical emission spectroscopy, indicating its reliability and applicability to asses Fe content in CNTs.  相似文献   
8.
This paper describes a compulsorily phase locked differential interferometer using an orthogonally polarized light source of a modulated LD with high extinction ratio to reduce non-linearity of the interferometer caused by polarization cross-talk. The current modulated LD is used as a light source to make the interferometer compact and for the scanning phase of the interferometer. The interferometer is operated compulsorily at the maximum inclination point of the fringe intensity curve by fringe scanning and an electric system. A Wollaston prism of high extinction ratio (50 dB) is used to combine the polarizing beams and to make the polarization cross-talk very small. In one light source the polarized output beams are on the same propagation axis; in the other they have a small crossing angle (2.5 mrad ∼ 10 mrad) to completely exclude non-linearity of the interferometer causded by polarization cross-talk. Using jets of a gas mixture of nitrogen and ethylene, this interferometer was demonstrated to be useful in detecting the photothermal effect of a photothermal velocimeter under phase fluctuation in a turbulent flow.  相似文献   
9.
Tin and titanium ferrocyanides were studied as adsorbents for alkali metal ions, viz., 134Cs and 22Na, which represent radioactive wastes. The ferrocyanides were prepared in granular form. The tin version contained 11.2% water, while the titanium version contained 17.7% water. The exchange capacities for Cs+ and Na+ in the hydrated tin version were about 1.5 and 0.7 meq/g, respectively, while those in the titanium version were 2.2 and 1.2 meq/g, respectively. Drying at 250°C decimated those capacities. The diffusional time constant of Cs+ at 25°C, determined via Fick's second law, was of order of magnitude 1 × 10–3 s–1, though there were minor differences due to particle size and the form of ferrocyanide. Similarly, the effective diffusivity was of order of magnitude 1 × 10–8 cm2/s. The titanium version responded slightly faster than the tin version. Likewise, equilibrium measurements in mixtures with sodium nitrate, potassium nitrate, or uranium oxide, showed that the titanium version exhibited significantly greater selectivity for Cs+ than did the tin version. Unfortunately, tests of complete elution of the Cs+ from the ferrocyanides were mostly disappointing. Work continues on that subject.  相似文献   
10.
Polybenzoxazine (PBZZ) thin films can be fabricated by the plasma‐polymerization technique with, as the energy source, plasmas of argon, oxygen, or hydrogen atoms and ions. When benzoxazine (BZZ) films are polymerized through the use of high‐energy argon atoms, electronegative oxygen atoms, or excited hydrogen atoms, the PBZZ films that form possess different properties and morphologies in their surfaces. High‐energy argon atoms provide a thermodynamic factor to initiate the ring‐opening polymerization of BZZ and result in the polymer surface having a grid‐like structure. The ring‐opening polymerization of the BZZ film that is initiated by cationic species such as oxygen atoms in plasma, is propagated around nodule structures to form the PBZZ. The excited hydrogen atom plasma initiates both polymerization and decomposition reactions simultaneously in the BZZ film and results in the formation of a porous structure on the PBZZ surface. We evaluated the surface energies of the PBZZ films polymerized by the action of these three plasmas by measuring the contact angles of diiodomethane and water droplets. The surface roughness of the films range from 0.5 to 26 nm, depending on the type of carrier gas and the plasma‐polymerization time. By estimating changes in thickness, we found that the PBZZ film synthesized by the oxygen plasma‐polymerization process undergoes the slowest rate of etching in CF4 plasma. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 4063–4074, 2004  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号