首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6篇
  免费   0篇
  国内免费   2篇
化学   7篇
物理学   1篇
  2022年   1篇
  2020年   1篇
  2019年   1篇
  2017年   1篇
  2015年   1篇
  2013年   1篇
  2012年   1篇
  1979年   1篇
排序方式: 共有8条查询结果,搜索用时 15 毫秒
1
1.
Polyphenols are a large family of natural compounds widely used in cosmetic products due to their antioxidant and anti-inflammatory beneficial properties and their ability to prevent UV radiation-induced oxidative stress. Since these compounds present chromophores and are applied directly to the skin, they can react with sunlight and exert phototoxic effects. The available scientific information on the phototoxic potential of these natural compounds is scarce, and thus the aim of this study was to evaluate the photoreactivity and phototoxicity of five phenolic antioxidants with documented use in cosmetic products. A standard ROS assay was validated and applied to screen the photoreactivity of the natural phenolic antioxidants caffeic acid, ferulic acid, p-coumaric acid, 3,4-dihydroxyphenylacetic acid (DOPAC), and rutin. The phototoxicity potential was determined by using a human keratinocyte cell line (HaCaT), based on the 3T3 Neutral Red Uptake phototoxicity test. Although all studied phenolic antioxidants absorbed UV/Vis radiation in the range of 290 to 700 nm, only DOPAC was able to generate singlet oxygen. The generation of reactive oxygen species is an early-stage chemical reaction as part of the phototoxicity mechanism. Yet, none of the studied compounds decreased the viability of keratinocytes after irradiation, leading to the conclusion that they do not have phototoxic potential. The data obtained with this work suggests that these compounds are safe when incorporated in cosmetic products.  相似文献   
2.
The synthesis and reactivity of a tetrahydrochromeno[2,3‐b]indoles are reported. Evidence for reversible ring‐opening is based on H/D exchange and trapping experiments. These compounds readily undergo reaction with tetra‐n‐butylammonium cyanide. The cyanide reaction is 10–100× faster when the solution is irradiated with 350 nm light. Reaction with trimethylsilyl cyanide occurs only with UV irradiation demonstrating photoreactivity. The rate of tetrahydrochromeno[2,3‐b]indole ring‐opening is greater for (i) Me substitution at the hemiaminal carbon (compared to Ph), and (ii) substitution of fluorine at the 9‐position of the indole. Under acidic conditions, the ring‐opened indolium ion is observed. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   
3.
PhotoCORMs (photo‐active CO‐releasing molecules) have emerged as a class of CO donors where the CO release process can be triggered upon illumination with light of appropriate wavelength. We have recently reported an Mn‐based photoCORM, namely [MnBr(pbt)(CO)3] [pbt is 2‐(pyridin‐2‐yl)‐1,3‐benzothiazole], where the CO release event can be tracked within cellular milieu by virtue of the emergence of strong blue fluorescence. In pursuit of developing more such trackable photoCORMs, we report herein the syntheses and structural characterization of two MnI–carbonyl complexes, namely fac‐tricarbonylchlorido[2‐(pyridin‐2‐yl)‐1,3‐benzothiazole‐κ2N ,N ′]manganese(I), [MnCl(C12H8N2S)(CO)3], (1), and fac‐tricarbonylchlorido[2‐(quinolin‐2‐yl)‐1,3‐benzothiazole‐κ2N ,N ′]manganese(I), [MnCl(C16H10N2S)(CO)3], (2). In both complexes, the MnI center resides in a distorted octahedral coordination environment. Weak intermolecular C—H…Cl contacts in complex (1) and Cl…S contacts in complex (2) consolidate their extended structures. These complexes also exhibit CO release upon exposure to low‐power broadband visible light. The apparent CO release rates for the two complexes have been measured to compare their CO donating capacity. The fluorogenic 2‐(pyridin‐2‐yl)‐1,3‐benzothiazole and 2‐(quinolin‐2‐yl)‐1,3‐benzothiazole ligands provide a convenient way to track the CO release event through the `turn‐ON' fluorescence which results upon de‐ligation of the ligands from their respective metal centers following CO photorelease.  相似文献   
4.
pH调控合成溴氧铋纳米片的底物依赖光催化特性   总被引:1,自引:0,他引:1  
艾智慧  王吉玲  张礼知 《催化学报》2015,(12):2145-2154
近年来,半导体光催化技术已广泛用于去除水中有机污染物.在各类光催化剂中,具有合适禁带宽度的溴氧铋(BiOBr,2.7 eV)材料吸引了众多研究者兴趣.通常情况下,半导体光催化降解有机污染物性能主要与光催化材料的结构性质,如物相组成、颗粒粒径、材料表面结构等相关.研究已经证实了TiO2光催化降解有机污染物具有底物依赖的特性,但是BiOBr的有机物降解特性与底物性质的关系研究尚未见文献报道.为发展高效的BiOBr太阳光催化污染净化技术,研究有机底物与BiOBr光催化降解性能的关系具有重要意义.本文分别在pH =1和pH =3条件下采用水热法合成了BiOBr纳米片(BOB-1和BOB-3),并通过X射线粉末衍射(XRD),扫描电子显微镜(SEM),透射电子显微镜(TEM),紫外-可见漫反射(DRS)等技术表征了所制备半导体光催化材料.结果表明,在不同pH条件下均能合成具有高结晶度的四方相BiOBr, BOB-1和BOB-3均由不规则的纳米片组成, BOB-3纳米片宽度大约为0.6–1.5μm,厚度大约27–44 nm,而BOB-1纳米片宽度大约为0.7–2.0μm,厚度大约50 nm.选区电子衍射观察到了BOB-1和BOB-3清晰的晶格条纹,晶格间距为0.20和0.28 nm,分别对应着四方晶系的(020)面和(110)面.选取罗丹明B(RhB)和水杨酸(SA)为典型有机底物分子,研究了BOB-1和BOB-3纳米片的底物依赖光催化特性.结果表明, BOB-1吸附SA和RhB 1 h后,吸附率分别仅为0.2%和0.8%,而BOB-3对SA和RhB的效率分别可达9.1%和12.7%;光催化降解两种底物分子的结果表明, BOB-1和BOB-3降解RhB的速率分别为4.00以及16.10 g·min–1·m2,而降解SA的速率分别为和2.35 g·min–1·m2.可见, BOB-1显示了高效降解SA的能力,而, BOB-3则表现出更强的降解RhB活性.电化学Mott-Schottky和电动电位测试结果表明, BOB-1比BOB-3有更正的价带电位和更低的表面电荷.捕获实验(KI捕获空穴, K2Cr2O7捕获电子,氩气捕获超氧负离子,异丙醇捕获羟基自由基)表明光生空穴与超氧负离子是BOB-3降解RhB的主要活性物种,而BOB-1降解SA主要是光生空穴作用,电子顺磁共振(ESR)测试进一步证实了以上结果.光电流密度测试结果表明,可见光作用下RhB可被激发到RhB*,导致BOB-3的电子空穴对分离效率高;而当电解质中存在SA时,催化剂的表面羟基与SA形成氢键,致使光生电子与空穴分离效果变差,因而光电流减少.本文提出了pH调控合成溴氧铋纳米片的底物依赖光催化降解RhB和SA机理,与BiOBr导带电位、底物分子吸附量、底物分子物理化学性质相关. BOB-1和BOB-3纳米片催化剂在可见光激发下能产生光生导带电子和价带空穴,这些光生载流子可迁移到催化剂表面.染料分子RhB在可见光作用下能发生光敏化作用生成激发态RhB*, RhB*可以将电子注入BOB-3催化剂的导带,导带上的光生电子与RhB*注入电子与吸附在其表面的氧气共同作用生成更多的超氧负离子,从而高效降解RhB.由于BOB-1比BOB-3有更正导带电势,导带电子无法直接还原氧气生成超氧负离子,仅能依靠光生空穴直接氧化RhB,导致BOB-1表现出降解RhB性能弱;对于无色的底物SA,吸附较多SA的BOB-3催化剂上的表面羟基与SA之间形成氢键作用,抑制了光生电子与空穴对的分离,导致BOB-3在可见光光催化降解SA活性弱,而BOB-1表面吸附SA较少,同时BOB-1有更负的价带电位,利用光生空穴与吸附在催化剂表面的SA反应,从而表现出高效降解SA的性能.  相似文献   
5.
6.
Three MnII complexes have been synthesized under similar experimental conditions. Of these [Mn2(benzoate)4(L)2] (where L=4-styrylpyridine or 4spy, 1 and 2-fluoro-4′-styrylpyridine or 2F-4spy, 3 ) are paddlewheel complexes, but crystallized in different space groups. Whereas [Mn2(benzoate)4(3F-4spy)4] (3F-4spy=3-fluoro-4′-styrylpyridine), 4 is a dinuclear complex having different stoichiometry from 1 and 3 with two pairs of 3F-4spy ligands aligned in face-to-face manner. An irreversible phase transition occurs from the space group P21/c to C2/c when 1 was heated up to 125 °C to 2 in a single-crystal-to-single-crystal fashion or when ground 1 to powder. 2 is isomorphous and isostructural to 3 . Complimentary π–π interactions in head-to-tail alignment of the styrylpyridine ligands furnishes 1D aggregates in 1 – 3 which are congenial to undergo [2+2] cycloaddition reaction under UV light. Whereas, face-to-face alignment of the 4spy pairs in 4 is expected to provide a head-to-head photoproduct. All the MnII complexes are indeed found to be photoreactive. To our surprise, contrary to their ZnII analogues, 2 and 3 were not found to be photosalient. The percentage volume expansion during the photoreaction as determined from the density measurements, was found to be too low (3.2 and 4.6 % respectively for 2 and 3 ) to have this behavior.  相似文献   
7.
The formation of a photoreactive cocrystal based upon 1,2‐diiodoperchlorobenzene ( 1,2‐C6I2Cl4 ) and trans‐1,2‐bis(pyridin‐4‐yl)ethylene ( BPE ) has been achieved. The resulting cocrystal, 2( 1,2‐C6I2Cl4 )·( BPE ) or C6Cl4I2·0.5C12H10N2, comprises planar sheets of the components held together by the combination of I…N halogen bonds and halogen–halogen contacts. Notably, the 1,2‐C6I2Cl4 molecules π‐stack in a homogeneous and face‐to‐face orientation that results in an infinite column of the halogen‐bond donor. As a consequence of this stacking arrangement and I…N halogen bonds, molecules of BPE also stack in this type of pattern. In particular, neighbouring ethylene groups in BPE are found to be parallel and within the accepted distance for a photoreaction. Upon exposure to ultraviolet light, the cocrystal undergoes a solid‐state [2 + 2] cycloaddition reaction that produces rctt‐tetrakis(pyridin‐4‐yl)cyclobutane ( TPCB ) with an overall yield of 89%. A solvent‐free approach utilizing dry vortex grinding of the components also resulted in a photoreactive material with a similar yield.  相似文献   
8.
Photoreactive and degradable hyperbranched (HB) copolymers with various 3,4‐dihydroxycinnamic acid (DHCA) compositions, poly(ε‐caprolactone)‐co‐poly(3,4‐dihydroxycinnamic acid) (PCL‐co‐PDHCA), were obtained by thermal melt‐polycondensation of PCL and DHCA. The HB structures and the branching degree (BD) of the PCL‐co‐PDHCA copolymers were confirmed by Fourier transform infrared spectroscopy (FTIR) and nuclear magnetic resonance (1H NMR). The melting points (Tm) of the PCL‐co‐PDHCA copolymers changed depending on the PCL and DHCA composition by differential scanning calorimetry (DSC) measurements. Wide angle X‐ray diffraction (WXRD) analysis showed semi‐crystalline of the PCL and PCL‐co‐PDHCA polymers. The PCL‐co‐PDHCA copolymers showed good photoreactivities and fluorescent properties. Crosslinking of the cinnamoyl groups in the copolymers caused by UV irradiation affected the thermal stability and wettability slightly. Moreover, the hydrolysis experiments revealed that copolymers are facile degradable.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号