首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   12篇
  免费   2篇
  国内免费   2篇
化学   13篇
物理学   3篇
  2022年   1篇
  2021年   1篇
  2020年   2篇
  2019年   1篇
  2018年   1篇
  2016年   3篇
  2013年   3篇
  2010年   1篇
  2008年   2篇
  2005年   1篇
排序方式: 共有16条查询结果,搜索用时 15 毫秒
1.
Photoelectron angular distribution (PAD) in the laboratory frame for randomly oriented molecules is typically described by a single anisotropy parameter, the so-called asymmetry parameter. However, especially from a theoretical perspective, it is more natural to consider molecular photoionization by using a molecular frame. The molecular frame PADs (MFPADs) may be used to extract information about the electronic structure of the system studied. In the last decade, significant experimental efforts have been directed to MFPAD measurements. MFPADs are highly characterizing signatures of the final ionic states. In particular, they are very sensitive to the nature of the final state, which is embodied in the corresponding Dyson orbital. In our previous work on acetylacetone, a prototype system for studying intra-molecular hydrogen bond interactions, we followed the dynamics of the excited states involved in the photoexcitation–deexcitation process of this molecule. It remains to be explored the possibility of discriminating between different excited states through the MFPAD profiles. The calculation of MFPADs to differentiate excited states can pave the way to the possibility of a clear discrimination for all the cases where the recognition of excited states is otherwise intricate.  相似文献   
2.
3.
Triplet state mechanism of [2 + 2] photocycloaddition forming a cyclobutane ring from two ethylenes is investigated in the context of photocatalysis. High‐level ab initio calculations are combined with ab initio adiabatic molecular dynamics and ab initio metadynamics for rare events modeling. In a photocatalytic scheme, a reactant reaches the triplet state either via intersystem crossing (ISC) or triplet sensitization. The model system adopts a biradical structure, which represents energy intersection with the ground state. The system either completes cyclization or undergoes fragmentation into two olefinic units. The potential and free energy surfaces of the cyclobutane/ethylenes system are mapped with multireference approaches describing possible reaction pathways. To obtain a full picture of a double bond photoreactivity, ab initio adiabatic dynamical calculations were used to estimate reaction yields and to model the effects of excess energy. The potential use of density functional theory based approaches for [2 + 2] photocycloaddition was investigated for future simulations and design of realistic photocatalytic systems. Dynamical aspects of [2 + 2] photocycloaddition via a triplet state manifold are investigated by combining ab initio multireference methods and ab initio molecular dynamics and metadynamics. The reaction pathways are studied for a model system of two ethylenes forming a cyclobutane ring to provide a basis for further studies on design of photocatalytic systems.  相似文献   
4.
Plants, as with humans, require photoprotection against the potentially damaging effects of overexposure to ultraviolet (UV) radiation. Previously, sinapoyl malate (SM) was identified as the photoprotective agent in thale cress. Here, we seek to identify the photoprotective agent in a similar plant, garden cress, which is currently used in the skincare product Detoxophane nc. To achieve this, we explore the photodynamics of both the garden cress sprout extract and Detoxophane nc with femtosecond transient electronic absorption spectroscopy. With the assistance of liquid chromatography-mass spectrometry, we determine that the main UV-absorbing compound in garden cress sprout extract is SM. Importantly, our studies reveal that the photoprotection properties of the SM in the garden cress sprout extract present in Detoxophane nc are not compromised by the formulation environment. The result suggests that Detoxophane nc containing the garden cress sprout extract may offer additional photoprotection to the end user in the form of a UV filter booster.  相似文献   
5.
The effect of the catalytic moiety on the early‐time photodynamics of Ru/M (M=Pt or Pd) bimetallic photocatalysts is studied by ultrafast transient absorption spectroscopy. In comparison to the Ru/Pd photocatalyst described earlier, the Ru/Pt analogue shows complex excited‐state dynamics with three distinct kinetic components ranging from sub‐ps to 102 ps, requiring a more sophisticated photophysical model than that developed earlier for the Ru/Pd complex. In the Pu/Pt photocatalyst, an additional lower‐lying excited state is proposed to quench the hot higher‐lying triplet metal‐to‐ligand charge‐transfer states. Furthermore, a strong excitation wavelength dependence on the population of excited states is observed for both the Ru/Pt and Ru/Pd complexes, indicating a non‐equilibrated distribution even on the 102 ps timescale. These insights shed light on the significant impact of the catalytic moiety on the fundamental early‐time photophysics of Ru‐based photocatalysts.  相似文献   
6.
Photoluminescence quenching studies of SmI2 in dry THF were carried out in the presence of five different classes of compounds: ketone, alkyl chloride, nitrile, alkene and imine. The free energy change (DeltaG0) of the photoinduced electron transfer (PET) reactions was calculated from the redox potentials of the donor (SmI2) and acceptors. The bimolecular quenching constants (k(q)) derived from the Stern-Volmer experiments parallel the free energy changes of the PET processes. The observed quenching constants were compared with the theoretically derived electron transfer rate constants (k(et)) from Marcus theory and found to be in good agreement when a value of lambda = 167 kJ mol(-1) (40 kcal mol(-1)) was used for the reorganization energy of the system. A careful comparison of the excited state dynamics of SmII in the solid state to the results obtained in solution (THF) provides new insight in to the excited states of SmII in THF. The activation parameters determined for the PET reactions in SmI2/1-chlorobutane system are consistent with a less ordered transition state and high degree of bond reorganization in the activated complex compared to similar ground state reactions. Irradiation studies clearly show that SmI2 acts as a better reductant in the excited state and provides an alternative pathway for rate enhancement in known and novel functional group reductions.  相似文献   
7.
The photodynamics of a C60-dithiapyrene donor-acceptor conjugate were compared with the corresponding C60-pyrene conjugate. The photoinduced charge separation and subsequent charge recombination processes were examined by time-resolved fluorescence measurements on the picosecond timescale and transient absorption measurements on the picosecond and microsecond timescales with detection in the visible and near-infrared regions. We have observed quite long lifetimes (i.e., up to 1.01 ns) for the photogenerated charge-separated state in a C60-dithiapyrene dyad without the need for i) a long spacer between the two moieties, or ii) a gain in aromaticity in the radical ion pair.  相似文献   
8.
Studies are reported on a series of triphenylamine–(C?C)n–2,5‐diphenyl‐1,3,4‐oxadiazole dyad molecules (n=1–4, 1 , 2 , 3 and 4 , respectively) and the related triphenylamine‐C6H4–(C?C)3–oxadiazole dyad 5 . The oligoyne‐linked D–π–A (D=electron donor, A=electron acceptor) dyad systems have been synthesised by palladium‐catalysed cross‐coupling of terminal alkynyl and butadiynyl synthons with the corresponding bromoalkynyl moieties. Cyclic voltammetric studies reveal a reduction in the HOMO–LUMO gap in the series of compounds 1 – 4 as the oligoyne chain length increases, which is consistent with extended conjugation through the elongated bridges. Photophysical studies provide new insights into conjugative effects in oligoyne molecular wires. In non‐polar solvents the emission from these dyad systems has two different origins: a locally excited (LE) state, which is responsible for a π*→π fluorescence, and an intramolecular charge transfer (ICT) state, which produces charge‐transfer emission. In polar solvents the LE state emission vanishes and only ICT emission is observed. This emission displays strong solvatochromism and analysis according to the Lippert–Mataga–Oshika formalism shows significant ICT for all the luminescent compounds with high efficiency even for the longer more conjugated systems. The excited‐state properties of the dyads in non‐polar solvents vary with the extent of conjugation. For more conjugated systems a fast non‐radiative route dominates the excited‐state decay and follows the Engelman–Jortner energy gap law. The data suggest that the non‐radiative decay is driven by the weak coupling limit.  相似文献   
9.
Two examples of core‐modified 36π doubly fused octaphyrins that undergo a conformational change from a twisted figure‐eight to an open‐extended structure induced by protonation are reported. Syntheses of the two octaphyrins (in which Ar=mesityl or tolyl) were achieved by a simple acid‐catalyzed condensation of dipyrrane unit containing an electron‐rich, rigid dithienothiophene (DTT) core with pentafluorobenzaldehyde followed by oxidation with 2,3‐dichloro‐5,6‐dicyano‐1,4‐benzoquinone (DDQ). The single‐crystal X‐ray structure of the octaphyrin (in which Ar=mesityl) shows a figure‐eight twisted conformation of the expanded porphyrin skeleton with two DTT moieties oriented in a staggered conformation with a π‐cloud distance of 3.7 Å. Spectroscopic and quantum mechanical calculations reveal that both octaphyrins conform to a [4n]π nonaromatic electronic structure. Protonation of the pyrrole nitrogen atoms of the octaphyrins results in dramatic structural change, which led to 1) a large redshift and sharpening of absorption bands in electronic absorption spectrum, 2) a large change in chemical shift of pyrrole β‐CH and ? NH protons in the 1H NMR spectrum, 3) a small increase in singlet lifetimes, and 4) a moderate increase in two‐photon absorption cross‐section values. Furthermore, nucleus‐independent chemical shift (NICS) values calculated at various geometrical positions show positive values and anisotropy‐induced current density (AICD) plots indicate paratropic ring‐currents for the diprotonated form of the octaphyrin (in which Ar=tolyl); the single‐crystal X‐ray structure of the diprotonated form of the octaphyrin shows an extended structure in which one of the pyrrole ring of each dipyrrin subunit undergoes a 180 ° ring‐flip. Four trifluoroacetic acid (TFA) molecules are bound above and below the molecular plane defined by meso‐carbon atoms and are held by N? H ??? O, N? H ??? F, and C? H ??? F intermolecular hydrogen‐bonding interactions. The extended‐open structure upon protonation allows π‐delocalization and the electronic structure conforms to a [4n]π Hückel antiaromatic in the diprotonated state.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号