首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   73篇
  免费   25篇
  国内免费   2篇
化学   15篇
物理学   85篇
  2023年   1篇
  2022年   3篇
  2021年   3篇
  2020年   9篇
  2019年   10篇
  2018年   8篇
  2017年   7篇
  2016年   2篇
  2015年   5篇
  2014年   4篇
  2013年   6篇
  2012年   8篇
  2011年   3篇
  2010年   5篇
  2009年   3篇
  2008年   3篇
  2007年   3篇
  2006年   3篇
  2004年   2篇
  2003年   8篇
  2002年   2篇
  2000年   2篇
排序方式: 共有100条查询结果,搜索用时 15 毫秒
1.
Highly strained quantum cascade laser (QCL) and quantum well infrared photodetector (QWIPs) structures based on InxGa(1−x)As−InyAl(1−y)As (x>0.8,y<0.3) layers have been grown by molecular beam epitaxy. Conditions of exact stoichiometric growth were used at a temperature of 420°C to produce structures that are suitable for both emission and detection in the 2–5 μm mid-infrared regime. High structural integrity, as assessed by double crystal X-ray diffraction, room temperature photoluminescence and electrical characteristics were observed. Strong room temperature intersubband absorption in highly tensile strained and strain-compensated In0.84Ga0.16As/AlAs/In0.52Al0.48As double barrier quantum wells grown on InP substrates is demonstrated. Γ–Γ intersubband transitions have been observed across a wide range of the mid-infrared spectrum (2–7 μm) in three structures of differing In0.84Ga0.16As well width (30, 45, and 80 Å). We demonstrate short-wavelength IR, intersubband operation in both detection and emission for application in QC and QWIP structures. By pushing the InGaAs–InAlAs system to its ultimate limit, we have obtained the highest band offsets that are theoretically possible in this system both for the Γ–Γ bands and the Γ–X bands, thereby opening up the way for both high power and high efficiency coupled with short-wavelength operation at room temperature. The versatility of this material system and technique in covering a wide range of the infrared spectrum is thus demonstrated.  相似文献   
2.
3.
4.
Organic ultraviolet photodetectors (OUV-PDs) were fabricated utilizing 2-TNATA as an electron donor with Bphen and TPBi as electron acceptors. A high sensitivity of OUV-PDs to UV light was obtained in the range of 300–420 nm. The optimized OUV-PDs composed of Bphen as the acceptor offered a photocurrent density up to 336 µA/cm2 at ?8 V with 365 nm UV light at a power of 1.2 mW/cm2. The high response is attributed to the excellent electron transport ability of Bphen and the matched energy level between 2-TNATA and Bphen.  相似文献   
5.
In this paper, a model to calculate the dark current of quantum well infrared photodetectors at high-temperature regime is presented. The model is derived from a positive-definite quantum probability-flux and considers thermionic emission and thermally-assisted tunnelling as mechanisms of dark current generation. Its main input data are the wave functions obtained by time-independent Schrodinger equation and it does not require empirical parameters related to the transport of carriers. By means of this model, the dark current of quantum well infrared photodetectors at high-temperature regime is investigated with respect to the temperature, the barrier width, the applied electric field and the position of the first excited state. The theoretical results are compared with experimental data obtained from lattice-matched InAlAs/InGaAs, InGaAsP/InP on InP substrate and AlGaAs/GaAs structures with rectangular wells and symmetric barriers, whose absorption peak wavelengths range from MWIR to VLWIR. The corresponding results are in a good agreement with experimental data at different temperatures and at a wide range of applied electric field.  相似文献   
6.
Quantum dot infrared photodetectors can be coupled with micro‐structured filters to create narrowband sensors. Guided‐mode resonance filters based on a high‐index dielectric slab can exhibit bandpass characteristics that are suitable for monolithic integration with focal‐plane arrays. Here, patterned Ge filters were integrated with InGaAs/GaAs quantum dot detectors to linearly tune their 77 K photoresponse peaks from 5.6 µm to 6.2 µm. The dark current was not influenced by these filters but the ability to narrow the photoresponse linewidth was limited by substrate scattering, which is often encountered with front‐side illumination architectures. (© 2014 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   
7.
Despite recent progress in producing perovskite nanowires (NWs) for optoelectronics, it remains challenging to solution-print an array of NWs with precisely controlled position and orientation. Herein, we report a robust capillary-assisted solution printing (CASP) strategy to rapidly access aligned and highly crystalline perovskite NW arrays. The key to the CASP approach lies in the integration of capillary-directed assembly through periodic nanochannels and solution printing through the programmably moving substrate to rapidly guide the deposition of perovskite NWs. The growth kinetics of perovskite NWs was closely examined by in situ optical microscopy. Intriguingly, the as-printed perovskite NWs array exhibit excellent optical and optoelectronic properties and can be conveniently implemented for the scalable fabrication of photodetectors.  相似文献   
8.
GeSe micro-sheets and micro-belts have been synthesized by a facile one-pot wet chemical method in 1-octadecene solvent and oleic acid solvent, respectively. The adsorption of more oleic acid molecules on the (002) plane promoted growth along [010] direction of the GeSe micro-belts and limited carrier transport in this direction, resulting in higher carrier concentration and mobility of the GeSe micro-belts. The performance of the photodetectors based on the single GeSe micro-sheet and the single GeSe micro-belt was investigated under illumination at 532 nm, 980 nm and 1319 nm. Both, photodetectors based on a single GeSe micro-sheet and a single GeSe micro-belt, exhibit a high photoresponse, short response/recovery times, and long-term durability. Moreover, the photodetector based on a single GeSe micro-belt displays a broadband response with a high responsivity (5562 A/W at 532 nm, 1546 A/W at 980 nm) and detectivity (3.01×1012 Jones at 532 nm, 8.38×1011 Jones at 980 nm). These excellent characteristics render single GeSe micro-belts very interesting for use as highly efficient photodetectors, especially in the NIR region.  相似文献   
9.
In this work, we report a new method for extending the response spectra of organic photodetectors (OPDs) by incorporating PBDT-TT-C and PBDT-TT-F in the P3HT:PC61BM. The effects of PBDT-TT-C and PBDT-TT-F incorporation on the optical and electrical properties of OPDs were investigated, It was found that when the mass ratio of P3HT:PBDT-TT-F:PBDT-TT-C:PC61BM was 12:2:2:8, the response spectrum of the active layer was extended to 780 nm. The responsivity (R) and external quantum efficiency (EQE) of the OPDs reached 340, 376, 315 mA/W and 67%, 88%, 85% under 630, 530, and 460 nm illumination and −1 V bias, respectively, and the detectivity (D*) reached 1012 Jones. The results show that the inclusion of an appropriate amount of donor material with similar chemical structure and complementary absorption spectrum can reduce the influence of the doping material on the micro-morphology of the original film while improving the absorption of the spectrum. The interaction between the donor materials promotes the generation of photogenerated carriers and increases the photocurrent of the OPDs. In addition, the incorporation of the different component promotes crystallization of the film, resulting in a reduction in dark current of the OPDs.  相似文献   
10.
薄膜光电器件的能级结构直接决定了载流子的产生、分离、传输、复合和收集等微观动力学过程,从而决定了器件性能。因此准确获取器件能级结构,是深入理解器件工作机制、推动器件技术革新的重要科学依据。此专论系统地介绍了本课题组利用扫描开尔文探针显微镜(SKPM)表征薄膜光电器件如有机太阳能电池、有机-无机钙钛矿光探测器等器件中界面能级结构的工作。垂直型薄膜器件中的活性材料层被顶电极与底电极封闭,通常难以直接在器件工况下测量其中的界面能级排布,我们发展了横截面SKPM技术来解决这一难题。研究表明,界面层是调控器件能级结构、决定器件极性、提高器件性能的重要手段。本文介绍的表征技术有望在各种薄膜光电器件,诸如光伏器件、光探测器、发光二极管,尤其是各种叠层构型器件的研究中展现出广阔的应用前景。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号