首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   39208篇
  免费   5812篇
  国内免费   4127篇
化学   30041篇
晶体学   647篇
力学   2157篇
综合类   258篇
数学   1244篇
物理学   14800篇
  2024年   91篇
  2023年   333篇
  2022年   839篇
  2021年   989篇
  2020年   1315篇
  2019年   1150篇
  2018年   1065篇
  2017年   1262篇
  2016年   1677篇
  2015年   1647篇
  2014年   1854篇
  2013年   3589篇
  2012年   2328篇
  2011年   2611篇
  2010年   2122篇
  2009年   2302篇
  2008年   2488篇
  2007年   2484篇
  2006年   2376篇
  2005年   2059篇
  2004年   1967篇
  2003年   1650篇
  2002年   1637篇
  2001年   1182篇
  2000年   1153篇
  1999年   979篇
  1998年   832篇
  1997年   722篇
  1996年   652篇
  1995年   624篇
  1994年   496篇
  1993年   434篇
  1992年   407篇
  1991年   287篇
  1990年   254篇
  1989年   182篇
  1988年   193篇
  1987年   144篇
  1986年   135篇
  1985年   120篇
  1984年   121篇
  1983年   46篇
  1982年   90篇
  1981年   44篇
  1980年   52篇
  1979年   51篇
  1978年   23篇
  1977年   16篇
  1976年   21篇
  1973年   20篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
1.
Large cable net structures have been widely applied in aerospace engineering due to the feature of light-weight, high packaging efficiency, and high thermal stability. Structural vibrations induced by a variety of disturbances are inevitable in the space environment, resulting in the requirement of effective vibration control strategies for large cable net structures. Since the large cable net structures have many closely spaced vibrational modes in the range of low frequencies, traditional modal based control may cause modal truncation and spillover problems. In this paper, a wave-based boundary control strategy is adopted and its effectiveness to control the vibration of cable net structures is investigated, by transfer function analysis and numerical methods. It is found that the structural vibration can be absolutely resisted by applying the wave-based boundary controllers onto all the exterior nodes, when disturbances come from the external boundaries of the cable net. Our results in this paper can provide a theoretical basis for the vibration control of large cable net structures.  相似文献   
2.
In many organic electronic devices functionality is achieved by blending two or more materials, typically polymers or molecules, with distinctly different optical or electrical properties in a single film. The local scale morphology of such blends is vital for the device performance. Here, a simple approach to study the full 3D morphology of phase‐separated blends, taking advantage of the possibility to selectively dissolve the different components is introduced. This method is applied in combination with AFM to investigate a blend of a semiconducting and ferroelectric polymer typically used as active layer in organic ferroelectric resistive switches. It is found that the blend consists of a ferroelectric matrix with three types of embedded semiconductor domains and a thin wetting layer at the bottom electrode. Statistical analysis of the obtained images excludes the presence of a fourth type of domains. The criteria for the applicability of the presented technique are discussed. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2015 , 53, 1231–1237  相似文献   
3.
Star copolymers have attracted significant interest due to their different characteristics compared with diblock copolymers, including higher critical micelle concentration, lower viscosity, unique spatial shape, or morphologies. Development of synthetic skills such as anionic polymerization and controlled radical polymerization have made it possible to make diverse architectures of polymers. Depending on the molecular architecture of the copolymer, numerous morphologies are possible, for instance, Archimedean tiling patterns and cylindrical microdomains at symmetric volume fraction for miktoarm star copolymers as well as asymmetric lamellar microdomains for star‐shaped copolymers, which have not been reported for linear block copolymers. In this review, we focus on morphologies and microphase separations of miktoarm (AmBn and ABC miktoarm) star copolymers and star‐shaped [(A‐b‐B)n] copolymers with nonlinear architecture. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2015 , 53, 1–21  相似文献   
4.
In the present work, the use of cylindrical turbulators in a double pipe heat exchanger has been investigated. Cylindrical fin type of turbulators has been placed circumferentially separated by 90° on the outer side of an inner pipe at a regular pitch. Experimental studies were undertaken for different air flow rates in a turbulent regime whose Reynolds number range between 2500 and 10000. Heat transfer characteristics like Nu and friction factor have been experimentally determined. Parametric studies were conducted by changing the pitch and also the orientation of the turbulators. Nu and friction factor were found to increase as the pitch is reduced. A model with alternatively changed orientation outperformed others by exhibiting highest Nu and reduced friction factor.  相似文献   
5.
Monodisperse aqueous upconverting nanoparticles (UCNPs) were covalently immobilized on aldehyde modified cellulose paper via reduction amination to develop a luminescence resonance energy transfer (LRET)-based nucleic acid hybridization assay. This first account of covalent immobilization of UCNPs on paper for a bioassay reports an optically responsive method that is sensitive, reproducible and robust. The immobilized UCNPs were decorated with oligonucleotide probes to capture HPRT1 housekeeping gene fragments, which in turn brought reporter conjugated quantum dots (QDs) in close proximity to the UCNPs for LRET. This sandwich assay could detect unlabeled oligonucleotide target, and had a limit of detection of 13 fmol and a dynamic range spanning nearly 3 orders of magnitude. The use of QDs, which are excellent LRET acceptors, demonstrated improved sensitivity, limit of detection, dynamic range and selectivity compared to similar assays that have used molecular fluorophores as acceptors. The selectivity of the assay was attributed to the decoration of the QDs with polyethylene glycol to eliminate non-specific adsorption. The kinetics of hybridization were determined to be diffusion limited and full signal development occurred within 3 min.  相似文献   
6.
Covalent organic frameworks (COFs) are a new class of crystalline porous polymers comprised mainly of carbon atoms, and are versatile for the integration of heteroatoms such as B, O, and N into the skeletons. The designable structure and abundant composition render COFs useful as precursors for heteroatom-doped porous carbons for energy storage and conversion. Herein, we describe a multifunctional electrochemical catalyst obtained through pyrolysis of a bimetallic COF. The catalyst possesses hierarchical pores and abundant iron and cobalt nanoparticles embedded with standing carbon layers. By integrating these features, the catalyst exhibits excellent electrochemical catalytic activity in the oxygen reduction reaction (ORR), with a 50 mV positive half-wave potential, a higher limited diffusion current density, and a much smaller Tafel slope than a Pt-C catalyst. Moreover, the catalyst displays superior electrochemical performance toward the hydrogen evolution reaction (HER), with overpotentials of −0.26 V and −0.33 V in acidic and alkaline aqueous solution, respectively, at a current density of 10 mA cm−2. The overpotential in the catalysis of the oxygen evolution reaction (OER) was 1.59 V at the same current density.  相似文献   
7.
This article describes the investigation of the importance of various reaction conditions on microsyneretic pore formation during polymerization of divinylbenzene (DVB) under so‐called “solvothermal” conditions. To induce microsyneretic pore formation, the most important parameter is an unusually high dilution of monomers with a “good” porogen solvating the polymer chains. High dilution and solvation of the growing poly(DVB) chains promote the prolongation of the polymer chains rather than their interconnection by crosslinking. Consequently, when the polymer gel density reaches the point where syneresis starts, the polymer network is geometrically too extensive to be broken up into precipitating entities and, instead, porogen droplets are formed within the continuous polymer gel. The pore geometry created by microsyneresis offers high surface area in wide mesopores and hence, high capacity for supporting functional groups or reactions with much better accessibility than narrow pores between polymer microspheres produced by macrosyneresis in conventional styrenic polymer supports. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2015 , 53, 774–781  相似文献   
8.
The impact of reversible bond formation between a growing radical chain and a metal complex (organometallic‐mediated radical polymerization (OMRP) equilibrium) to generate an organometallic intermediate/dormant species is analyzed with emphasis on the interplay between this and other one‐electron processes involving the metal complex, which include halogen transfer in atom transfer radical polymerization (ATRP), hydrogen‐atom transfer in catalytic chain transfer (CCT), and catalytic radical termination (CRT). The challenges facing the controlled polymerization of “less active monomers” (LAMs) are outlined and, after reviewing the recent achievements of OMRP in this area, the perspectives of this technique are analyzed.  相似文献   
9.
DFT computations have been performed to investigate the mechanism of H2‐assisted chain transfer strategy to functionalize polypropylene via Zr‐catalyzed copolymerization of propylene and p‐methylstyrene (pMS). The study unveils the following: (i) propylene prefers 1,2‐insertion over 2,1‐insertion both kinetically and thermodynamically, explaining the observed 1,2‐insertion regioselectivity for propylene insertion. (ii) The 2,1‐inserion of pMS is kinetically less favorable but thermodynamically more favorable than 1,2‐insertion. The observation of 2,1‐insertion pMS at the end of polymer chain is due to thermodynamic control and that the barrier difference between the two insertion modes become smaller as the chain length becomes longer. (iii) The pMS insertion results in much higher barriers for subsequent either propylene or pMS insertion, which causes deactivation of the catalytic system. (iv) Small H2 can react with the deactivated [Zr]?pMS?PPn facilely, which displace functionalized pMS?PPn chain and regenerate [Zr]? H active catalyst to continue copolymerization. The effects of counterions are also discussed. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2015 , 53, 576–585  相似文献   
10.
The first immobilized catalyst for Ir‐catalyzed asymmetric allylic aminations is described. The catalyst is a cationic (π‐allyl)Ir complex bound by cation exchange to an anionic silica gel support. Preparation of the catalyst is facile, and the supported catalyst displayed considerably enhanced activity compared with the parent homogeneous catalyst. Up to 43 consecutive amination runs were possible in recycling experiments.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号