首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   15篇
  免费   0篇
  国内免费   1篇
化学   16篇
  2015年   1篇
  2014年   1篇
  2013年   2篇
  2012年   1篇
  2006年   1篇
  2005年   1篇
  1999年   1篇
  1994年   1篇
  1989年   1篇
  1988年   1篇
  1987年   3篇
  1986年   2篇
排序方式: 共有16条查询结果,搜索用时 15 毫秒
1.
The exces enthalpies of solution of some primary and secondary alcohols in aqueous sodium dodecylsulfate micellar solutions were measured and the results were explained by considering the distribution of alcohols between aqueous and micellar phases. The distribution constant and the enthalpy of transfer (and the standard free energy and entropy of transfer) were obtained. The thermodynamic parameters for the transfer of secondary alcohols from the aqueous to the sodium dodecylsulfate (NaDS) micellar phase differ slightly from those of the corresponding primary alcohols. For both series of alcohols the additivity rule holds for free energies of transfer whereas enthalpies and entropies display convex curves. The present data are compared to those for the transfer of the same solutes from the aqueous to the dodecyldimethylamine oxide (DDAO) and dodecyltrimethylammonium bromide (DTAB) micellar phases. The role of the hydrophilic interactions between the OH group and the micelles' head groups is formulated. The thermodynamics of the branched methyl group were determined. Furthermore, the thermodynamics of solvation of primary alcohols in water, in NaDS micelles, and in octane have been calculated using reference states based on the assumption that the empty space around alcohols in the initial and final states is the same. It is shown that the solvation of alcohols in NaDS micellar phase is enthalpy driven and that the thermodynamic properties of solvation vs. the length of the alcohol tail is the same for water and NaDS micelles whereas it is different for octane. A possible explanation for this difference is that the alkyl chain of alcohols folds in octane.  相似文献   
2.
At a given surfactant-surfactant ratio, the enthalpies of transfer ΔH (W→W+S) of pentanol 0.03m from water to sodium dodecylsulfate (NaDS)-dodecyldimethylamine oxide-water mixtures as functions of the surfactants mixture concentration (m t) were determined. ForX NaDS=0.9, ΔH (W→W+S) increases monotonically withm t such as observed for pure surfactants. ForX NaDS=0.12 and 0.3, ΔH (W→W+S) increases withm t up to 0.12m beyond which it decreases withm t. AtX NaDS=0.6, two monotonic curves can be distinguished in the ΔH (W→W+S)vs. m t trend. Experimental data were fitted through an equation previously reported for additives in pure surfactants derived by assuming the pseudo-phase transition model for the micellization and a mass action model for the distribution of the additive between the aqueous and the micellar phases. This method did permit to simultaneously obtain the distribution constant of the alcohol between the aqueous and the micellar phase (and, then, the standard free energy of transfer) and its enthalpy of transfer from the aqueous to the micellar phases. By combining these properties the standard entropies of transfer were calculated. From these results, the excess properties of pentanol in the mixed micelles were calculated as a function of the mixture composition. The excess enthalpies and entropies are positive and compensate with each other leading to null values for the excess free energies in the whole range of the mixed micelles composition.  相似文献   
3.
Density measurements on decyltrimethylammonium bromide (DeTAB)–water and pentanol (PentOH)–DeTAB–water systems as functions of both alcohol and surfactant m S concentrations were carried out at 2 and 19 MPa from 25 to 130°C. From experimental data for the water–DeTAB binary system, the standard (infinite dilution) partial molar volumes, expansibilities, and compressibilities of DeTAB, and the corresponding properties in the micellar phase are calculated. The trends of the standard partial molar volumes of PentOH V R o in DeTAB micellar solutions as functions of m S reflect the transfer of PentOH from the aqueous to the micellar phase, except at 130°C and 19 MPa. On the basis of an equation previously used, the distribution constant of PentOH between the aqueous and the micellar phases and the standard partial molar volume of alcohol in the aqueous and the micellar phases are obtained from V R o data. Comparisons with data for PentOH in dodecyltrimethylammonium bromide are made.  相似文献   
4.
The enthalpies of solution and of dilution of 1-butanol and 1-pentanol were measured in micellar solutions of dodecyltrimethylammonium bromide by systematically changing the concentration of alcohols and surfactant. The enthalpies of solution at infinite dilution of alcohols at each surfactant concentration were evaluated from a linear plot. This quantity increases with surfactant concentration (up to 0.8m) with a curvature which depends on the alcohol alkyl chain length. The difficulties arising for a quantitative treatment of both the enthalpies of dilution and of solution at finite alcohol concentrations are discussed. The dependence on the surfactant concentration of the standard enthalpies of solution and the enthalpies of dilution for m0 are rationalized. From the resulting equations the distribution constant, standard enthalpy of transfer, standard enthalpy of solution, and the alcohol-alcohol interaction parameter in the micellar phase are evaluated. The enthalpies of transfer obtained using this technique agree well with those previously reported from enthalpies of mixing. The distribution constants also agree with those reported in the literature from several approaches: mixing enthalpies, partial molar volumes, and the dependence of the cmc on added alcohol.  相似文献   
5.
The densities of 1-butanol and 1-pentanol were measured in aqueous solutions of dodecyltrimethylammonium bromide and dodecyldimethylamine oxide and the partial molar volumes at infinite dilution of the alcohols in aqueous surfactants solutions were obtained. The observed trends of this quantity as a function of the surfactant concentration were rationalized using a mass-action model for the alcohol distribution between the aqueous and the micellar phase. At the same time, the model was revised to account for the alcohol effect on the surfactant micellization equilibrium. The partial molar volume of alcohols in the aqueous and in the micellar phases and the ratios between the binding constant and the aggregation number were calculated. These thermodynamic quantities are nearly the same in the two surfactants analyzed in this paper but differ appreciably from those in sodium dodecylsulfate. The apparent molar volume of surfactants in some hydroalcoholic solutions at fixed alcohol concentration were also calculated. In the micellization region the trend of this quantity as a function of the surfactant concentration shows a hump, which depends on the alcohol concentration and on the alcohol alkyl chain length. The alcohol extraction from the aqueous to the micellar phase due to the addition of the surfactant can account for the observed trends.  相似文献   
6.
赵振华 《合成化学》2006,14(1):103-105
首次用磷酸铝分子筛催化戊酸与正戊醇的酯化反应合成了戊酸正戊酯。适宜的酯化条件为:戊酸50mmol,n(正戊醇)∶n(戊酸)=1.2∶1.0,回流反应3 h~5 h,1 mol戊酸用催化剂2.0 g,酯化率高于90%。  相似文献   
7.
The interpretation of micelle/aggregate size obtained by use of the DLS technique for SDS/water/pentanol systems was discussed by comparison of the results of measurement with theoretical data. For most of the studied systems, the apparent radii (R h,app ) did not satisfactorily characterize the size of the aggregates (R h,app  < 1 nm). The use of a correction factor (f = 0.26) confirmed that the discrepancies were associated with the electrostatic intermicellar interactions. However, the fuzzy optical interface between dispersed and dispersing phases can also be the reason of such results. An increase of pentanol content caused a decrease of the droplet radius in w/o systems but in o/w systems the changes were negligible.  相似文献   
8.
Heat capacities of the ternary systems water-dodecyltrimethylammonium bromide (DTAB)-butanol and water-DTAB-pentanol were measured at 25°C. The standard partial molar heat capacities of pentanol in micellar solutions show a maximum at about 0.35 mol-kg–1 DTAB that has been attributed to a micellar structural transition. This maximum tends to vanish by increasing the alcohol concentration and by decreasing the alcohol alkyl chain length; in the case of butanol it was not detected. The behavior of the standard partial molar heat capacities of alcohols in micellar solutions in the region above the cmc and below the structural transition was explained using a previously reported mass-action model for the alcohol distribution between the aqueous and the micellar phase and the pseudophase transition model for micellization. In the resulting equation the contributions due to the temperature effect on the shift of both the micellization equilibrium and the distribution are shown to be negligible so that only the distribution effect and the shift of the micellization equilibrium due to the added alcohol remain. The distribution constant and the partial molar heat capacities of alcohols in the aqueous and micellar phases have been derived by linear regression. The distribution constant for both alcohols agree well with those previously obtained using different techniques. Since the best fit below the structural transition correlates as well with the experimental points above the structural transition, it seems that no difference exists in the standard partial molar heat capacities of alcohols in the two shapes of the micelles. Also, from the present data and those for alkanols in sodium dodecylsulfate reported in the literature it seems that the standard heat capacity of alcohols in the micellar phase does not depend on both the alcohol alkyl chain length and the nature of the hydrophilic moiety of the head group of the micelles.  相似文献   
9.
In this work, we present the experimental measurements of excess molar enthalpies for the binary systems of dibutyl ether with different isomers of pentanol: 1-pentanol, 2-pentanol, 3-pentanol, 3-methyl-2-butanol, 2-methyl-1-butanol, 3-methyl-1-butanol and 2-methyl-2-butanol; all of them at T = (298.15 and 308.15) K and atmospheric pressure. Our goal was to determine the influence of the OH-group position on the different isomers of pentanol in the excess molar enthalpies of the binary systems studied. For this purpose we have analysed their experimental effective-reduced dipole moments. All values of excess molar enthalpies for the mixtures studied are positive whereas the results obtained for the effective-reduced dipole moments of the isomers of pentanol are similar.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号