首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  免费   1篇
化学   1篇
物理学   2篇
  2021年   1篇
  2020年   2篇
排序方式: 共有3条查询结果,搜索用时 15 毫秒
1
1.
Vo Van On  Le Nhat Thanh 《哲学杂志》2020,100(14):1834-1848
ABSTRACT

The electronic properties and electron transport of a sawtooth penta-graphene nanoribbon (SSPGNR) under uniaxial strains are theoretically studied by density-functional theory (DFT) in combination with the non-equilibrium Green's function formalism. We investigated the electronic structures and the current–voltage (I–V) characteristics of the SSPGNRs under a sequence of uniaxial strains in range from 10% compression to 10% stretch. In this strained range, carbon atoms still keep a pentagon network, but with the changing bond lengths. The C–C bond lengths change almost linearly with the tolerable strain. The value of the band gap of SSPGNRs can be depicted as a parabola under uniaxial strain. Our calculations show that the current is monotonous increase with compressive strain at the same applied bias voltage. In case of tensile strain, the variable rule of the current is different that it increases at first and decrease later. The fundamental physical properties (band structure, I–V characteristic) of SSPGNRs seem to be more sensitive to compressive strain than the stretch strain. The current intensity of the compressive-SSPGNR is by 2 orders of magnitude compared to that of the tensile-SSPGNR at the same strain in range from 6% to 10%. The results obtained from our calculations are beneficial to practical applications of these strained structures in SSPGNRs-based electromechanical devices.  相似文献   
2.
Let L n denote a linear pentagonal chain with 2n pentagons. The penta-graphene (penta-C), denoted by R n is the graph obtained from L n by identifying the opposite lateral edges in an ordered way, whereas the pentagonal Möbius ring is the graph obtained from the L n by identifying the opposite lateral edges in a reversed way. In this paper, through the decomposition theorem of the normalized Laplacian characteristic polynomial and the relationship between its roots and the coefficients, an explicit closed-form formula of the multiplicative degree-Kirchhoff index (resp. Kemeny's constant, the number of spanning trees) of R n is obtained. Furthermore, it is interesting to see that the multiplicative degree-Kirchhoff index of R n is approximately of its Gutman index. Based on our obtained results, all the corresponding results are obtained for .  相似文献   
3.
异质结工程是一种提高半导体材料光电性能的有效方法.本文构建了全无机钙钛矿CsPbX3(X=Cl,Br,I)和二维五环石墨烯penta-graphene(PG)的新型范德瓦耳斯(vdW)异质结,利用第一性原理研究了CsPbX3-PG异质结不同界面接触的稳定性,进而计算了稳定性较好的Pb-X接触界面异质结的电子结构和光电性能.研究结果表明,CsPbX3-PG(X=Cl,Br,I)异质结具有II型能带排列特征,能级差距由Cl向I逐渐缩小,具有良好的光生载流子分离能力和电荷输运性质.此外,研究发现CsPbX3-PG异质结能有效拓宽材料的光吸收谱范围,并能显著提高其光吸收能力,尤其是CsPbI3具有最优的光吸收性能.经理论估算,CsPbX3-PG的光电功率转换效率(PCE)可高达21%.这些结果表明,全无机金属卤化物钙钛矿CsPbX3-PG异质结可以有效地提高半导体材料的光电性能,预期在光电转换器件中具有重要的应用潜力.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号