首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   30篇
  免费   1篇
化学   29篇
物理学   2篇
  2022年   1篇
  2021年   3篇
  2020年   1篇
  2019年   1篇
  2018年   1篇
  2016年   1篇
  2013年   2篇
  2012年   1篇
  2011年   3篇
  2010年   3篇
  2009年   2篇
  2008年   4篇
  2006年   2篇
  2002年   1篇
  1998年   2篇
  1997年   1篇
  1994年   1篇
  1992年   1篇
排序方式: 共有31条查询结果,搜索用时 31 毫秒
1.
 The surface tensions of aqueous poly(N-vinylformamide) (PNVF), polyvinylamine (PVAM), and PNVF–PVAM copolymers were measured as functions of pH. The nonionic PNVF gave a pH-independent surface tension of 68 mN/m. The surface tension of PVAM was pH dependent; at pH 10 it was 56 mN/m, whereas it was 71.5 mN/m at pH 3.5. The transition from higher to lower surface tension values occurred most dramatically between pH 8 and 9, reflecting the dissociation behavior of the amine groups. The copolymers showed intermediate behavior. Received: 20 August 2001 Accepted: 26 September 2001  相似文献   
2.
Novel pH-sensitive hydrogels containing azoaromatic crosslinks were synthesized by the crosslinking of polymeric precursors. First, a reactive polymeric precursor was synthesized by copolymerization of N,N-dimethylacrylamide, N-tert-butylacrylamide, acrylic acid, and N-methacryloylglycylglycine p-nitrophenyl ester. The hydrogel was prepared in the second step by the reaction of the polymeric precursor with N,N′-(ω-aminocaproyl)-4,4′-diaminoazobenzene. The hydrogels were characterized by the network structure, (that is, content of crosslinks, unreacted pendent groups, and cycles), the equilibrium swelling ratio as a function of pH, modulus of elasticity in compression, and the degradability in vitro. The results obtained indicated that the hydrogel network structure strongly depends on the reaction conditions such as polymer concentration, and the ratio of the reactive groups during the crosslinking reaction. The swelling and mechanical properties of hydrogels can be controlled by the modification of polymer backbone structure and/or the crosslinking density. The rates of hydrogel degradation depended on their degree of swelling. The higher the degree of swelling, the higher the degradability. The properties of the hydrogels suggest that they have a potential as carriers for colon-specific drug delivery. © 1994 John Wiley & Sons, Inc.  相似文献   
3.
Layered/two-dimensional covalent organic frameworks (2D COF) are crystalline porous materials composed of light elements linked by strong covalent bonds. Interlayer force is one of the main factors directing the formation of a stacked layer structure, which plays a vital role in the stability, crystallinity, and porosity of layered COFs. The as-developed new way to modulate the interlayer force of imine-linked 2D TAPB-PDA-COF (TAPB = 1,3,5-tris(4-aminophenyl)benzene, PDA = terephthaldehyde) by only adjusting the pH of the solution. At alkaline and neutral pH, the pore size of the COF decreases from 34 Å due to the turbostratic effect. Under highly acidic conditions (pH 1), TAPB-PDA-COF shows a faster and stronger turbostratic effect, thus causing the 2D structure to exfoliate. This yields bulk quantities of an exfoliated few/single-layer 2D COF, which was well dispersed and displayed a clear Tyndall effect (TE). Furthermore, nanopipette-based electrochemical testing also confirms the slipping of layers with increase towards acidic pH. A model of pH-dependent layer slipping of TAPB-PDA-COF was proposed. This controllable pH-dependent change in the layer structure may open a new door for potential applications in controlled gas adsorption/desorption and drug loading/releasing.  相似文献   
4.
Monoolein (MO) cubic phase incorporating hydrophobically modified chosan (Hm chitosan) was prepared to obtain a pH-dependent release. Following calorimetric study, Hm chitosan had little effect on the crystal structure of MO cubic phase under acidic condition where Hm chitosan is readily soluble. At a higher pH (e.g., pH 9.0), however, the crystal structure of MO cubic phase was disturbed, possibly due to the insolubilization of Hm chitosan at the alkali condition. Whether the dye included in the cubic phase is anionic (amaranth) or cationic (methylene blue), the release from the cubic phase was suppressed as the pH of release medium increased. The structural change of cubic phase caused by the insolubilization of Hm chitosan, or the blockage of the water channel of the cubic phase by precipitated Hm chitosan would be responsible for the suppressed released.  相似文献   
5.
Herein we report four [Ir(N^C)2(L^L)]n+, n = 0,1 complexes (1–4) containing cyclometallated N^C ligand (N^CH = 1-phenyl-2-(4-(pyridin-2-yl)phenyl)-1H-phenanthro[9,10-d]imidazole) and various bidentate L^L ligands (picolinic acid (1), 2,2′-bipyridine (2), [2,2′-bipyridine]-4,4′-dicarboxylic acid (3), and sodium 4,4′,4″,4‴-(1,2-phenylenebis(phosphanetriyl))tetrabenzenesulfonate (4). The N^CH ligand precursor and iridium complexes 1–4 were synthesized in good yield and characterized using chemical analysis, ESI mass spectrometry, and NMR spectroscopy. The solid-state structure of 2 was also determined by XRD analysis. The complexes display moderate to strong phosphorescence in the 550–670 nm range with the quantum yields up to 30% and lifetimes of the excited state up to 60 µs in deoxygenated solution. Emission properties of 1–4 and N^CH are strongly pH-dependent to give considerable variations in excitation and emission profiles accompanied by changes in emission efficiency and dynamics of the excited state. Density functional theory (DFT) and time-dependent density functional theory (TD DFT) calculations made it possible to assign the nature of emissive excited states in both deprotonated and protonated forms of these molecules. The complexes 3 and 4 internalize into living CHO-K1 cells, localize in cytoplasmic vesicles, primarily in lysosomes and acidified endosomes, and demonstrate relatively low toxicity, showing more than 80% cells viability up to the concentration of 10 µM after 24 h incubation. Phosphorescence lifetime imaging microscopy (PLIM) experiments in these cells display lifetime distribution, the conversion of which into pH values using calibration curves gives the magnitudes of this parameter compatible with the physiologically relevant interval of the cell compartments pH.  相似文献   
6.
林榕光 《结构化学》2011,30(10):1483-1492
Three lanthanum/4-sulfocalix[4]arene complexes,namely,H2[(H4CAS)La(H2O)7]2· H2[(H4CAS)La(H2O)7]2·2C2H5OH·12H2O(1),[H(H4CAS)La(H2O)5]·5H2O(2)and [(H4CAS)La-(H2O)4(NO3)La(H2O)5]·7H2O(3),have been synthesized at different pH conditions.Complex 1,which exhibits the structure of "molecular capsule" containing the guest of C2H5OH molecule,is formed at pH = 1.At pH = 2~3,a two-dimensional(2D)coordination polymer of 2 is formed.Further increase of the pH value to 5 leads to the three-dimensional(3D)coordination polymer of 3.Crystal data for 1:monoclinic,space group P21/n,a = 10.8743(16),b = 25.957(4),c = 15.863(2),β = 94.763(2)°,V = 4462.1(11)3,Mr = 1160.87,Z = 4,F(000)= 2376,R = 0.0370 and wR = 0.0936;Crystal data for 2:tetragonal,space group P4/n,a = 11.6593(16),c = 14.069(4),V = 1912.5(6)3,Mr = 1114.81,Z = 2,F(000)= 1136,R = 0.0849 and wR = 0.1906;and those for 3:triclinic,space group P1,a = 10.4588(16),b = 14.995(2),c = 16.699(3),α = 65.446(3),β = 83.487(3),γ = 73.305(3)°,V = 2281.6(6)3,Mr = 1367.76,Z = 2,F(000)= 1368,R = 0.0423 and wR = 0.1183.  相似文献   
7.
Intracellular transport of chloride by members of the CLC transporter family involves a coupled exchange between a Cl anion and a proton (H+), which makes the transport function dependent on ambient pH. Transport activity peaks at pH 4.5 and stalls at neutral pH. However, a structure of the WT protein at acidic pH is not available, making it difficult to assess the global conformational rearrangements that support a pH-dependent gating mechanism. To enable modeling of the CLC-ec1 dimer at acidic pH, we have applied molecular dynamics simulations (MD) featuring a new force field modification scheme—termed an Equilibrium constant pH approach (ECpH). The ECpH method utilizes linear interpolation between the force field parameters of protonated and deprotonated states of titratable residues to achieve a representation of pH-dependence in a narrow range of physiological pH values. Simulations of the CLC-ec1 dimer at neutral and acidic pH comparing ECpH-MD to canonical MD, in which the pH-dependent protonation is represented by a binary scheme, substantiates the better agreement of the conformational changes and the final model with experimental data from NMR, cross-link and AFM studies, and reveals structural elements that support the gate-opening at pH 4.5, including the key glutamates Gluin and Gluex.  相似文献   
8.
The fabrication of well-defined nanostructures with luminescent properties in the solid or aggregated state is of intense interest due to their applications in nano- and biotechnology. We report the synthesis of water-soluble tetraphenylethylene bearing four sulfonate groups as a sodium salt (Su-TPE), and investigations concerning its AIE characteristics by the addition of organic solvent into the aqueous solution, which is the reverse procedure to conventional AIE-active TPE derivatives. The resultant compound is weakly emissive in pure water, however, emits strongly upon addition of THF solvent (with THF fraction > 60%). The emission properties and the morphologies of the aggregates were greatly dependent upon the solution pH. Su-TPE self-assembled into variety of structures in water/THF mixture with pH control, for the first time. Well-defined uniform nanorods with a width of about 200 nm and a length of up to 10 μm were obtained at solution pH of 1. The Su-TPE showed very good mechanochromic properties were observed during the process of grounding and fuming.  相似文献   
9.
Two true supramolecular isomers (1 and 2) formulated as [Zn(bipy)(H2btc)2]n (bipy=2,2′-bipyridine, H3btc=benzene-1,3,5-tricarboxylic acid) have been hydrothermally prepared through systematically changing the pH value of reaction mixture, and characterized by single-crystal X-ray diffraction, element analysis, infrared spectra (IR), and differential scanning calorimetry (DSC). Isomer 1 crystallizes in triclinic space group P-1, tetrahedral Zn(ΙΙ) ions possess four-coordinated environment, while isomer 2 crystallizes in monoclinic space group C2/c and the distorted octahedral Zn(II) ions adopt six-coordinated fashion. 1 and 2 can be regarded as supramolecular structural isomers, the formation of which should be undoubtedly attributed to the preference for pH-dependent crystallization leading to multiple connectivity (monodentate and chelating bidentate) of organic ligand despite the same stoichiometry employed. The supramolecular chemistry, which organizes the coordination complexes into three-dimensional (3D) layered open structure, is driven by a combination of hydrogen-bond and π-π interactions. Moreover, 1 emits fluorescence at 350.1 nm () and 2 exhibits fluorescent property at about 351.4 nm ().  相似文献   
10.
Solid phase extraction (SPE) methods based on multiple extractions have been developed to overcome matrix interferences in the charge-based fractionation analysis of As, Cr, Mo, Sb, Se and V leached from cement-based materials. Disposable SPE tubes packed with 500 mg strong anion-exchange (SAX) or strong cation-exchange (SCX) sorbents were used to extract the anionic and cationic species of the elements, respectively. The multiple extractions were based on the percolation of a small sample volume (5.0 mL) through a series of identical ion-exchange tubes. For most of the elements, more than 90% of the anionic species were extracted from a sample containing up to 16 g L−1 NO3 by passing the aliquot through five identical SAX tubes. Percolating a sample aliquot through three identical SCX cartridges gave more than 99% retention for Cr(III) from leachates containing a high concentration of interfering metal cations. The anionic and cationic analytes showed only slight non-specific adsorption on the SCX and SAX sorbents, respectively, except for V(V) on the SCX sorbent. A condition was established for the quantitative elution of the retained analytes from the ion-exchange sorbents with 1.0 mol L−1 HNO3. The multiple ion-exchange SPE procedures were validated using spike recovery tests. The methods were used to determine the anionic and cationic fractions of the target elements in concrete leachates covering a broad range of pH (3.8-13.4). The elements were found to exist predominantly as anions in the alkaline and neutral leachates. A high fraction (85%) of cationic Cr was detected in the most acidic leachate (pH 3.8).  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号