首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   23009篇
  免费   2978篇
  国内免费   1880篇
化学   24227篇
晶体学   482篇
力学   55篇
综合类   42篇
数学   15篇
物理学   3046篇
  2024年   55篇
  2023年   259篇
  2022年   834篇
  2021年   939篇
  2020年   1316篇
  2019年   925篇
  2018年   716篇
  2017年   637篇
  2016年   1124篇
  2015年   1096篇
  2014年   1134篇
  2013年   1783篇
  2012年   1261篇
  2011年   1135篇
  2010年   1118篇
  2009年   1087篇
  2008年   1086篇
  2007年   1084篇
  2006年   1017篇
  2005年   943篇
  2004年   998篇
  2003年   897篇
  2002年   2073篇
  2001年   534篇
  2000年   439篇
  1999年   393篇
  1998年   401篇
  1997年   299篇
  1996年   485篇
  1995年   455篇
  1994年   201篇
  1993年   135篇
  1992年   175篇
  1991年   111篇
  1990年   91篇
  1989年   94篇
  1988年   76篇
  1987年   43篇
  1986年   58篇
  1985年   62篇
  1984年   51篇
  1983年   31篇
  1982年   28篇
  1981年   26篇
  1980年   14篇
  1979年   15篇
  1978年   13篇
  1975年   11篇
  1971年   48篇
  1970年   25篇
排序方式: 共有10000条查询结果,搜索用时 281 毫秒
1.
《Mendeleev Communications》2022,32(5):597-600
Calorimetric monitoring of the autoclave reaction N2O4 + C2H4 at –85 to +10 °C under argon pressure 10–30 bar revealed that the exothermic chemical reaction started at temperatures above –52 °C at 10 bar, whereas an intensive exothermic reaction started at –85 °C and pressure of 30 bar. IR study showed that oligo/polynitroethylene was formed at 30 bar, while carbonyl and hydroxy compound as well as nitrate R–ONO2 formation occurred upon processing at 10 bar.  相似文献   
2.
《Mendeleev Communications》2022,32(3):395-396
A new method for assembling 1,3-selenazolines by the iodine- mediated reaction of the simplest building blocks such as elemental selenium, alkenes and acetonitrile has been discovered. A proposed mechanism includes the addition of the intermediate selenium iodides to alkene with subsequent solvent interception by the formed seleniranium ion.  相似文献   
3.
Enhancement of axial magnetic anisotropy is the central objective to push forward the performance of Single-Molecule Magnet (SMM) complexes. In the case of mononuclear lanthanide complexes, the chemical environment around the paramagnetic ion must be tuned to place strongly interacting ligands along either the axial positions or the equatorial plane, depending on the oblate or prolate preference of the selected lanthanide. One classical strategy to achieve a precise chemical environment for a metal centre is using highly structured, chelating ligands. A natural approach for axial-equatorial control is the employment of macrocycles acting in a belt conformation, providing the equatorial coordination environment, and leaving room for axial ligands. In this review, we present a survey of SMMs based on the macrocycle belt motif. Literature systems are divided in three families (crown ether, Schiff-base and metallacrown) and their general properties in terms of structural stability and SMM performance are briefly discussed.  相似文献   
4.
《Mendeleev Communications》2022,32(1):105-108
A mixed-metal 1D coordination polymer [CaCu(HBTC)2(H2O)8]n (where H3BTC – benzene-1,3,5-tric arboxylic acid) was obtained in a solvothermal synthesis of a well-known copper-containing metal–organic framework [Cu3(BTC)2(H2O)3]n (HKUST-1) in autoclaves 3D-printed from commercial polypropylene. This material was a source of calcium ions, apparently, leaking from a colorant (calcium carbonate) promoted by glacial acetic acid as a modulator used to produce large single crystals of HKUST-1. This finding was confirmed by elemental analysis and a model experiment that resulted in a new calcium-based 1D coordination polymer [Ca(H2BTC)2(H2O)5]n under the same solvothermal conditions with no copper or calcium salts put into a 3D-printed autoclave.  相似文献   
5.
Pentafluorosulfanyl (SF5)-containing compounds and corresponding analogs are a highly valuable class of fluorine-containing building blocks owing to their unique properties. The reason for that is the set of peculiar and tremendously beneficial characteristics they can impart on molecules once introduced onto them. Despite this, their application in distinct scientific fields remains modest, given the extremely harsh reaction conditions needed to access such compounds. The recent synthetic approaches via S−F, and C−SF5 bond formation as well as the use of SF5-containing building blocks embody a “stairway-to-heaven” loophole in the synthesis of otherwise-inaccessible chemical scaffolds only a few years ago. Herein, we report and evaluate the properties of the SF5 group and analogs, by summarizing synthetic methodologies available to access them as well as following applications in material science and medicinal chemistry since 2015.  相似文献   
6.
Acridone as a new kind of visible light photocatalyst has been developed to catalyze metal free atom transfer radical polymerization (ATRP). The photocatalyst possess low excited state potential as can undergo an oxidative quenching pathway to initiate ATRP of vinyl monomers. Kinetic study and light on/off reaction demonstrate the “living”/controlled nature of the polymerization by light. Block copolymers can be achieved by using PMMA as macroinitiator to reinitiate polymerization of other vinyl monomers, which shows highly preserved Br chain-end functionality in the synthesized polymers. Moreover, the polymerization can be conducted under air atmosphere as most photocatalysts need anaerobic condition, which may give inspiration of further application of this kind of photocatalyst.  相似文献   
7.
Understanding the thermal aggregation behavior of metal atoms is important for the synthesis of supported metal clusters. Here, derived from a metal–organic framework encapsulating a trinuclear FeIII2FeII complex (denoted as Fe3) within the channels, a well-defined nitrogen-doped carbon layer is fabricated as an ideal support for stabilizing the generated iron nanoclusters. Atomic replacement of FeII by other metal(II) ions (e.g., ZnII/CoII) via synthesizing isostructural trinuclear-complex precursors (Fe2Zn/Fe2Co), namely the “heteroatom modulator approach”, is inhibiting the aggregation of Fe atoms toward nanoclusters with formation of a stable iron dimer in an optimal metal–nitrogen moiety, clearly identified by direct transmission electron microscopy and X-ray absorption fine structure analysis. The supported iron dimer, serving as cooperative metal–metal site, acts as efficient oxygen evolution catalyst. Our findings offer an atomic insight to guide the future design of ultrasmall metal clusters bearing outstanding catalytic capabilities.  相似文献   
8.
Palladium nanoparticle‐incorporated metal–organic framework MIL‐101 (Pd/MIL‐101) was successfully synthesized and characterized using X‐ray diffraction, nitrogen physisorption, X‐ray photoelectron, UV–visible and infrared spectroscopies, and transmission electron microscopy. The characterization techniques confirmed high porosity and high surface area of MIL‐101 and high stability of nano‐size palladium particles. Pd/MIL‐101 nanocomposite was investigated for the Sonogashira cross‐coupling reaction of aryl and heteroaryl bromides with various alkynes under copper‐free conditions. The reusability of the catalyst was tested for up to four cycles without any significant loss in catalytic activity. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
9.
The aim of this work was to determine the parameters that have decisive roles in microwave-assisted reactions and to develop a model, using computational chemistry, to predict a priori the type of reactions that can be improved under microwaves. For this purpose, a computational study was carried out on a variety of reactions, which have been reported to be improved under microwave irradiation. This comprises six types of reactions. The outcomes obtained in this study indicate that the most influential parameters are activation energy, enthalpy, and the polarity of all the species that participate. In addition to this, in most cases, slower reacting systems observe a much greater improvement under microwave irradiation. Furthermore, for these reactions, the presence of a polar component in the reaction (solvent, reagent, susceptor, etc.) is necessary for strong coupling with the electromagnetic radiation. We also quantified that an activation energy of 20–30 kcal mol−1 and a polarity (μ) between 7–20 D of the species involved in the process is required to obtain significant improvements under microwave irradiation.  相似文献   
10.
This study was aimed at the development of a conductometric biosensor based on acetylcholinesterase considering the feasibility of its application for the inhibitory analysis of various toxicants. In this paper, the optimum conditions for enzyme immobilization on the transducer surface are selected as well as the optimum concentration of substrate for inhibitory analysis. Sensitivity of the developed biosensor to different classes of toxic compounds (organophosphorus pesticides, heavy metal ions, surfactants, aflatoxin, glycoalkaloids) was tested. It is shown that the developed biosensor can be successfully used for the analysis of pesticides and mycotoxins, as well as for determination of total toxicity of the samples. A new method of biosensor analysis of toxic substances of different classes in complex multicomponent aqueous samples is proposed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号