首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1篇
  免费   2篇
化学   3篇
  2015年   1篇
  2014年   1篇
  1992年   1篇
排序方式: 共有3条查询结果,搜索用时 15 毫秒
1
1.
In the design of energetic materials, high energetic performance and good molecular stability are two main goals. Energetic functionalization which strives for maximum energy often results in unstable chemical bonds and causes safety problems in practical production and storage operations. In this work, N‐nitro‐ and N‐nitroamino‐functionalized mono‐ and bis(1,2,4‐triazoles) were synthesized and characterized by infrared, and multinuclear NMR spectra, and elemental analyses. The N‐nitroamino‐functionalization strategy was employed for bis(imidazole), leading to high density compound 14 (2.007 g cm?3 at 100 K; 1.94 g cm?3 at room temperature) and energetic salt 15 . While N‐nitro‐functionalized products are thermally unstable and highly moisture sensitive, N‐nitroamino‐functionalized energetic salts, which are comprised of additional nitrogen‐containing ions, exhibit good density, moderate to excellent structural stabilities, and high performance.  相似文献   
2.
The reaction of 3-nitropyrazole and 3(5)-nitro-1,2,4-triazole with t-BuNHMgBr gives the corresponding asymmetrical diazene oxides. Furthermore, 3(5)-(1,1-dimethylethyl)azoxy-1,2,4-triazole was also synthesized by the reaction of 1-trimethylsilyl-3(5)-nitro-1,2,4-triazole with t-BuNHLi.N. D. Zelinskii Institute of Organic Chemistry, Russian Academy of Sciences, 117913 Moscow. Translated from Izvestiya Akademii Nauk, Seriya Khimicheskaya, No. 7, pp. 1653–1654, July, 1992.  相似文献   
3.
N‐diazo‐bridged azoles were synthesized based on oxidative coupling of N‐aminoazoles. Incorporation of extended catenated nitrogen‐atom chains with nitro groups led to compounds with favorable functional compatibilities. This combination gives rise to a series of high‐density energetic materials (HEDMs) with high heats of formation, enhanced densities, positive oxygen balances, and good detonation properties while retaining excellent thermal stabilities and relatively low impact sensitivities. Calculated and experimental studies showed the delicate balance between the length of the nitrogen atom chain, energetic performance, and inherent stability, thus, providing a promising strategy for designing advanced energetic materials.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号