首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5790篇
  免费   808篇
  国内免费   1038篇
化学   7169篇
晶体学   73篇
力学   21篇
综合类   36篇
数学   2篇
物理学   335篇
  2024年   26篇
  2023年   62篇
  2022年   156篇
  2021年   205篇
  2020年   346篇
  2019年   206篇
  2018年   181篇
  2017年   191篇
  2016年   301篇
  2015年   265篇
  2014年   289篇
  2013年   426篇
  2012年   389篇
  2011年   302篇
  2010年   233篇
  2009年   307篇
  2008年   373篇
  2007年   393篇
  2006年   375篇
  2005年   345篇
  2004年   336篇
  2003年   311篇
  2002年   286篇
  2001年   196篇
  2000年   173篇
  1999年   145篇
  1998年   120篇
  1997年   133篇
  1996年   104篇
  1995年   94篇
  1994年   82篇
  1993年   70篇
  1992年   73篇
  1991年   27篇
  1990年   27篇
  1989年   16篇
  1988年   17篇
  1987年   6篇
  1986年   9篇
  1985年   10篇
  1984年   8篇
  1983年   2篇
  1982年   2篇
  1981年   3篇
  1980年   2篇
  1979年   2篇
  1978年   3篇
  1977年   2篇
  1967年   1篇
  1966年   1篇
排序方式: 共有7636条查询结果,搜索用时 955 毫秒
1.
The designs of efficient and inexpensive Pt-based catalysts for methanol oxidation reaction (MOR) are essential to boost the commercialization of direct methanol fuel cells. Here, the highly catalytic performance PtFe alloys supported on multiwalled carbon nanotubes (MWCNTs) decorating nitrogen-doped carbon (NC) have been successfully prepared via co-engineering of the surface composition and electronic structure. The Pt1Fe3@NC/MWCNTs catalyst with moderate Fe3+ feeding content (0.86 mA/mgPt) exhibits 2.26-fold enhancement in MOR mass activity compared to pristine Pt/C catalyst (0.38 mA/mgPt). Furthermore, the CO oxidation initial potential of Pt1Fe3@NC/MWCNTs catalyst is lower relative to Pt/C catalyst (0.71 V and 0.80 V). Benefited from the optimal surface compositions, the anti-corrosion ability of MWCNT, strong electron interaction between PtFe alloys and MWCNTs and the N-doped carbon (NC) layer, the Pt1Fe3@NC/MWCNTs catalyst presents an improved MOR performance and anti-CO poisoning ability. This study would open up new perspective for designing efficient electrocatalysts for the DMFCs field.  相似文献   
2.
Three‐dimensional (3D) nanometal films serving as current collectors have attracted much interest recently owing to their promising application in high‐performance supercapacitors. In the process of the electrochemical reaction, the 3D structure can provide a short diffusion path for fast ion transport, and the highly conductive nanometal may serve as a backbone for facile electron transfer. In this work, a novel polypyrrole (PPy) shell@3D‐Ni‐core composite is developed to enhance the electrochemical performance of conventional PPy. With the introduction of a Ni metal core, the as‐prepared material exhibits a high specific capacitance (726 F g?1 at a charge/discharge rate of 1 A g?1), good rate capability (a decay of 33 % in Csp with charge/discharge rates increasing from 1 to 20 A g?1), and high cycle stability (only a small decrease of 4.2 % in Csp after 1000 cycles at a scan rate of 100 mV s?1). Furthermore, an aqueous symmetric supercapacitor device is fabricated by using the as‐prepared composite as electrodes; the device demonstrates a high energy density (≈21.2 Wh kg?1) and superior long‐term cycle ability (only 4.4 % and 18.6 % loss in Csp after 2000 and 5000 cycles, respectively).  相似文献   
3.
ABSTRACT

The authors present the results of an investigation in Fe–Ni-Cr austenitic alloys of the low-temperature deformation-induced segregations of nickel that form in the micro regions being (i) located close to grain- and subgrain boundaries and (ii) characteristic of the concentration and magnetic inhomogeneities indicated by the appearance of a dark diffraction contrast at the electron diffraction patterns taken from these regions typical (at the same time) of an enhanced value of Curie temperature. The observed effects were connected with the micro distortions caused by the local change of lattice parameter because of an increase in nickel concentration, as well as in the result of a magnetostriction dilatation. Using methods of the X-ray energy dispersive spectroscopy (XEDS) and atomic-probe body-section radiography (tomography – APT) has made it possible to determine the borders of those regions of austenite that were characteristic of an enhanced concentration of nickel in the fields of the localisation of a deformation-induced segregation of nickel in the vicinity of grain (subgrain) boundaries of austenitic alloys of the types Fe–13Cr–30Ni and Fe–37Ni–3Ti.  相似文献   
4.
Over the past two decades, advanced materials with hollow interiors have received significant attention in materials research owing to their great application potential across a vast number of technological fields. Though with great difficulty, multi-shelled hollow metal–organic frameworks (MSHMs) have also been successfully synthesized in recent years. Herein, a rational shell-by-shell soft-templating protocol has been devised to fabricate highly uniform multi-shelled hollow cobalt-imidazole-based MOF (ZIF-67). For the first time, it has become possible to endow mesoporosity to this new type of functional material (i.e., mesoporous MOFs). When used as carrier materials in catalytic reactions, in principle, these mesoporous MSHMs with high surface area not only improve the dispersity of metal nanoparticles (NPs), but also efficiently facilitate the mass diffusion of the reactions, resulting in enhanced catalyst activity. Moreover, the obtained MSHMs/M nanocomposites serve as base-metal bifunctional catalysts for one-pot oxidation-Knoevenagel condensation cascade reaction, in which the MSHMs itself serves as a pristine active catalyst in addition to its role of catalyst support. The results demonstrate that excellent multifunctional catalysts can be achieved via preparing intrinsically microporous bulk MOFs into extrinsically mesoporous MSHMs which possess many structural merits that conventional bulk MOFs do not have.  相似文献   
5.
Covalent organic frameworks (COFs) are a new class of crystalline porous polymers comprised mainly of carbon atoms, and are versatile for the integration of heteroatoms such as B, O, and N into the skeletons. The designable structure and abundant composition render COFs useful as precursors for heteroatom-doped porous carbons for energy storage and conversion. Herein, we describe a multifunctional electrochemical catalyst obtained through pyrolysis of a bimetallic COF. The catalyst possesses hierarchical pores and abundant iron and cobalt nanoparticles embedded with standing carbon layers. By integrating these features, the catalyst exhibits excellent electrochemical catalytic activity in the oxygen reduction reaction (ORR), with a 50 mV positive half-wave potential, a higher limited diffusion current density, and a much smaller Tafel slope than a Pt-C catalyst. Moreover, the catalyst displays superior electrochemical performance toward the hydrogen evolution reaction (HER), with overpotentials of −0.26 V and −0.33 V in acidic and alkaline aqueous solution, respectively, at a current density of 10 mA cm−2. The overpotential in the catalysis of the oxygen evolution reaction (OER) was 1.59 V at the same current density.  相似文献   
6.
DFT computations have been performed to investigate the mechanism of H2‐assisted chain transfer strategy to functionalize polypropylene via Zr‐catalyzed copolymerization of propylene and p‐methylstyrene (pMS). The study unveils the following: (i) propylene prefers 1,2‐insertion over 2,1‐insertion both kinetically and thermodynamically, explaining the observed 1,2‐insertion regioselectivity for propylene insertion. (ii) The 2,1‐inserion of pMS is kinetically less favorable but thermodynamically more favorable than 1,2‐insertion. The observation of 2,1‐insertion pMS at the end of polymer chain is due to thermodynamic control and that the barrier difference between the two insertion modes become smaller as the chain length becomes longer. (iii) The pMS insertion results in much higher barriers for subsequent either propylene or pMS insertion, which causes deactivation of the catalytic system. (iv) Small H2 can react with the deactivated [Zr]?pMS?PPn facilely, which displace functionalized pMS?PPn chain and regenerate [Zr]? H active catalyst to continue copolymerization. The effects of counterions are also discussed. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2015 , 53, 576–585  相似文献   
7.
The first immobilized catalyst for Ir‐catalyzed asymmetric allylic aminations is described. The catalyst is a cationic (π‐allyl)Ir complex bound by cation exchange to an anionic silica gel support. Preparation of the catalyst is facile, and the supported catalyst displayed considerably enhanced activity compared with the parent homogeneous catalyst. Up to 43 consecutive amination runs were possible in recycling experiments.  相似文献   
8.
Iron catalysts have been used widely for the mass production of carbon nanotubes (CNTs) with high yield. In this study, UV/visible spectroscopy was used to determine the Fe catalyst content in CNTs using a colorimetric technique. Fe ions in solution form red–orange complexes with 1,10-phenanthroline, producing an absorption peak at λ=510 nm, the intensity of which is proportional to the solution Fe concentration. A series of standard Fe solutions were formulated to establish the relationship between optical absorbance and Fe concentration. Many Fe catalysts were microscopically observed to be encased by graphitic layers, thus preventing their extraction. Fe catalyst dissolution from CNTs was investigated with various single and mixed acids, and Fe concentration was found to be highest with CNTs being held at reflux in HClO4/HNO3 and H2SO4/HNO3 mixtures. This novel colorimetric method to measure Fe concentrations by UV/Vis spectroscopy was validated by inductively coupled plasma optical emission spectroscopy, indicating its reliability and applicability to asses Fe content in CNTs.  相似文献   
9.
Developing clean and sustainable energies as alternatives to fossil fuels is in strong demand within modern society. The oxygen evolution reaction (OER) is the efficiency-limiting process in plenty of key renewable energy systems, such as electrochemical water splitting and rechargeable metal–air batteries. In this regard, ongoing efforts have been devoted to seeking high-performance electrocatalysts for enhanced energy conversion efficiency. Apart from traditional precious-metal-based catalysts, nickel-based compounds are the most promising earth-abundant OER catalysts, attracting ever-increasing interest due to high activity and stability. In this review, the recent progress on nickel-based oxide and (oxy)hydroxide composites for water oxidation catalysis in terms of materials design/synthesis and electrochemical performance is summarized. Some underlying mechanisms to profoundly understand the catalytic active sites are also highlighted. In addition, the future research trends and perspectives on the development of Ni-based OER electrocatalysts are discussed.  相似文献   
10.
Summary Carbon deposits on the surface ofRu/Fe2O3 catalysts used in the water-gas shift reaction have been investigated by Auger Electron Spectrometry. A correlation has been found between the thickness of the carbon deposit and the catalytic activity in WGSR. The carbon deposit covers the metallic active centers and blocks their contact with reagents. The dotting of the iron oxide support with sodium has been found to reduce the amount of carbon deposit. .   相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号