首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   28369篇
  免费   5064篇
  国内免费   3877篇
化学   18445篇
晶体学   655篇
力学   2755篇
综合类   256篇
数学   1843篇
物理学   13356篇
  2024年   89篇
  2023年   362篇
  2022年   770篇
  2021年   977篇
  2020年   1429篇
  2019年   1040篇
  2018年   960篇
  2017年   1064篇
  2016年   1423篇
  2015年   1332篇
  2014年   1646篇
  2013年   2358篇
  2012年   1626篇
  2011年   1889篇
  2010年   1655篇
  2009年   1858篇
  2008年   1970篇
  2007年   1984篇
  2006年   1865篇
  2005年   1453篇
  2004年   1378篇
  2003年   1319篇
  2002年   995篇
  2001年   871篇
  2000年   792篇
  1999年   656篇
  1998年   582篇
  1997年   443篇
  1996年   386篇
  1995年   299篇
  1994年   280篇
  1993年   217篇
  1992年   184篇
  1991年   185篇
  1990年   128篇
  1989年   117篇
  1988年   96篇
  1987年   91篇
  1986年   87篇
  1985年   73篇
  1984年   63篇
  1983年   43篇
  1982年   53篇
  1981年   43篇
  1980年   33篇
  1979年   38篇
  1978年   16篇
  1977年   24篇
  1976年   15篇
  1974年   10篇
排序方式: 共有10000条查询结果,搜索用时 281 毫秒
1.
This paper is concerned with the Cauchy problem on the Boltzmann equation without angular cutoff assumption for hard potential in the whole space. When the initial data is a small perturbation of a global Maxwellian, the global existence of solution to this problem is proved in unweighted Sobolev spaces HN(Rx,v6) with N2. But if we want to obtain the optimal temporal decay estimates, we need to add the velocity weight function, in this case the global existence and the optimal temporal decay estimate of the Boltzmann equation are all established. Meanwhile, we further gain a more accurate energy estimate, which can guarantee the validity of the assumption in Chen et al. (0000).  相似文献   
2.
We investigate the possibility of phantom crossing in the dark energy sector and the solution for the Hubble tension between early and late universe observations. We use robust combinations of different cosmological observations, namely the Cosmic Microwave Background (CMB), local measurement of Hubble constant (H0), Baryon Acoustic Oscillation (BAO) and SnIa for this purpose. For a combination of CMB+BAO data that is related to early universe physics, phantom crossing in the dark energy sector was confirmed at a 95% confidence level and we obtained the constraint H0=71.03.8+2.9 km/s/Mpc at a 68% confidence level, which is in perfect agreement with the local measurement by Riess et al. We show that constraints from different combinations of data are consistent with each other and all of them are consistent with phantom crossing in the dark energy sector. For the combination of all data considered, we obtained the constraint H0=70.25±0.78 km/s/Mpc at a 68% confidence level and the phantom crossing happening at the scale factor am=0.8510.031+0.048 at a 68% confidence level.  相似文献   
3.
By linking the carbazole unit to the nitrogen atom of acridone through phenyl or pyridyl, two compounds, named 10-(4-(9H-carbazol-9-yl)phenyl)acridin-9(10H)-one (AC-Ph-Cz) and 10-(5-(9H-carbazol-9-yl)pyridin-2-yl)acridin-9(10H)-one (AC-Py-Cz) were designed and synthesized. These two materials, characterized with highly twisted and rigid structure, good thermal stability, and balanced carrier-transporting properties, were employed as host materials for green phosphorescent and thermally activated delayed fluorescent organic light-emitting diodes (OLEDs). The carbazole group, despite its small contribution to the highest occupied molecular orbitals (HOMOs) of these two materials, plays an essential role as an intramolecular host in energy delivering and improving the hole transporting ability of these two hosts. The incorporation of the electron-deficient pyridyl group as a linking group slightly improves the electron transporting capability of AC-Py-Cz. The green phosphorescent OLED (PhOLED) based on AC-Py-Cz exhibited excellent device performance with a turn-on voltage of 2.5 V, a maximum power efficiency and an external quantum efficiency (ηext) of 89.8 lm W−1 and 25.2 %, respectively, benefitting from the better charge-balancing ability of AC-Py-Cz host due to the presence of the pyridyl bridge. More importantly, all the devices based on these two hosts showed low efficiency roll-off at high brightness due to the suppressed non-radiative transition in the emitting layer. In particular, the AC-Py-Cz-hosted green PhOLED exhibited an efficiency roll-off of 1.6 % from the maximum next at a high brightness of 1000 cd m−2 and a roll-off of 15.9 % at an extremely high brightness of 10000 cd m−2. This study manifests that acridone-based host materials have great potential in fabricating OLEDs with low efficiency roll-off.  相似文献   
4.
A temperature control unit was implemented to vary the temperature of samples studied on a commercial Mobile Universal Surface Explorer nuclear magnetic resonance (MOUSE-NMR) apparatus. The device was miniaturized to fit the maximum MOUSE sampling depth (25 mm). It was constituted by a sample holder sandwiched between two heat exchangers placed below and above the sample. Air was chosen as the fluid to control the temperature at the bottom of the sample, at the interface between the NMR probe and the sample holder, in order to gain space. The upper surface of the sample was regulated by the circulation of water inside a second heat exchanger placed above the sample holder. The feasibility of using such a device was demonstrated first on pure water and then on several samples of bread dough with different water contents. For this, T1 relaxation times were measured at various temperatures and depths and were then compared with those acquired with a conventional compact closed-magnet spectrometer. Discussion of results was based on biochemical transformations in bread dough (starch gelatinization and gluten heat denaturation). It was demonstrated that, within a certain water level range, and because of the low magnetic field strength of the MOUSE, a linear relationship could be established between T1 relaxation times and the local temperature in the dough sample.  相似文献   
5.
The three-dimensional structure of nanocomposite microgels was precisely determined by cryo-electron micrography. Several nanocomposite microgels that differ with respect to their nanocomposite structure, which were obtained from seeded emulsion polymerization in the presence of microgels, were used as model nanocomposite materials for cryo-electron micrography. The obtained three-dimensional segmentation images of these nanocomposite microgels provide important insights into the interactions between the hydrophobic monomers and the microgels, that is, hydrophobic styrene monomers recognize molecular-scale differences in polarity within the microgels during the emulsion polymerization. This result led to the formation of unprecedented multi-layered nanocomposite microgels, which promise substantial potential in colloidal applications.  相似文献   
6.
The design of new solid-state proton-conducting materials is a great challenge for chemistry and materials science. Herein, a new anionic porphyrinylphosphonate-based MOF ( IPCE-1Ni ), which involves dimethylammonium (DMA) cations for charge compensation, is reported. As a result of its unique structure, IPCE-1Ni exhibits one of the highest value of the proton conductivity among reported proton-conducting MOF materials based on porphyrins (1.55×10−3 S cm−1 at 75 °C and 80 % relative humidity).  相似文献   
7.
The development of high‐surface‐area carbon electrodes with a defined pore size distribution and the incorporation of pseudo‐active materials to optimize the overall capacitance and conductivity without destroying the stability are at present important research areas. Composite electrodes of carbon nano‐onions (CNOs) and polypyrrole (Ppy) were fabricated to improve the specific capacitance of a supercapacitor. The carbon nanostructures were uniformly coated with Ppy by chemical polymerization or by electrochemical potentiostatic deposition to form homogenous composites or bilayers. The materials were characterized by transmission‐ and scanning electron microscopy, differential thermogravimetric analyses, FTIR spectroscopy, piezoelectric microgravimetry, and cyclic voltammetry. The composites show higher mechanical and electrochemical stabilities, with high specific capacitances of up to about 800 F g?1 for the CNOs/SDS/Ppy composites (chemical synthesis) and about 1300 F g?1 for the CNOs/Ppy bilayer (electrochemical deposition).  相似文献   
8.
The aim of this work was to determine the parameters that have decisive roles in microwave-assisted reactions and to develop a model, using computational chemistry, to predict a priori the type of reactions that can be improved under microwaves. For this purpose, a computational study was carried out on a variety of reactions, which have been reported to be improved under microwave irradiation. This comprises six types of reactions. The outcomes obtained in this study indicate that the most influential parameters are activation energy, enthalpy, and the polarity of all the species that participate. In addition to this, in most cases, slower reacting systems observe a much greater improvement under microwave irradiation. Furthermore, for these reactions, the presence of a polar component in the reaction (solvent, reagent, susceptor, etc.) is necessary for strong coupling with the electromagnetic radiation. We also quantified that an activation energy of 20–30 kcal mol−1 and a polarity (μ) between 7–20 D of the species involved in the process is required to obtain significant improvements under microwave irradiation.  相似文献   
9.
We present the fabrication of core-shell-satellite Au@SiO2-Pt nanostructures and demonstrate that LSPR excitation of the core Au nanoparticle can induce plasmon coupling effect to initiate photocatalytic hydrogen generation from decomposition of formic acid. Further studies suggest that the plasmon coupling effect induces a strong local electric field between the Au core and Pt nanoparticles on the SiO2 shell, which enables creation of hot electrons on the non-plasmonic-active Pt nanoparticles to participate hydrogen evolution reaction on the Pt surface. In addition, small SiO2 shell thickness is required in order to obtain a strong plamon coupling effect and achieve efficient photocatalytic activities for hydrogen generation.  相似文献   
10.
We have synthesized a series of triarylamine‐cored molecules equipped with an adjacent amide moiety and dendritic peripheral tails in a variety of modes. We show by 1H NMR and UV/Vis spectroscopy that their supramolecular self‐assembly can be promoted in solution upon light stimulation and radical initiation. In addition, we have probed their molecular arrangements and mesomorphic properties in the bulk by integrated studies on their film state by using differential scanning calorimetry (DSC), variable‐temperature polarizing optical microscopy (VT‐POM), variable‐temperature X‐ray diffraction (VT‐XRD), and atomic force microscopy (AFM). Differences in the number and the disposition of the peripheral tails significantly affect their mesomorphic properties associated with their lamellar‐ or columnar‐packed nanostructures, which are based on segregated stacks of the triphenylamine cores and the lipophilic/lipophobic periphery. Such structural tuning is of interest for implementation of these soft self‐assemblies as electroactive materials from solution to mesophases.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号